自分は経済を勉強し始めた者ですが、すみません。この問題なんですが、聞かれ
ている意味が分からないのですが
どういう解法を使用するべきなんでしょうか?

予算制約条件pxX+pyY=mのもとで、効用関数U(x,y)=xy2乗の最大化問題
を考える(pxはx財の価格、pyはy財の価格、mは所得を表している)
1)ラグランジュ関数を定義し、一階の条件を全て求めなさい。
2)需要関数x=x(Px,Py,m)、y=y(Px,Py,m)を求めなさい。

このQ&Aに関連する最新のQ&A

A 回答 (1件)

ラグランジュ関数が分からないと、全く分からないですね。



「pxX」の小文字のxはpにつく添え字だと思いますので、これを誤解ないように、以下p_xXのように表記します(私も正確な表記法を調べてみましたが、わからないので、その点はご勘弁願います)

1)ラグランジュ関数の定義は、
L=(目的関数)+λ(制約条件)

と覚えて下さい。数学的には極めて乱暴ですが、経済学の数学はツールでしかないので、これで十分です。

この場合、
目的関数は U(x,y)=xy^2
制約条件 s.t. p_xX+p_yY=m
(s.t. は subject to 、すなわち制約条件のこと)
となります。

これを定式化すると
L=U(x,y)+λ(m-p_xX-p_yY)
となります。もちろん、U(x,y)の部分には、関数を代入しましょう。
これをx,y,λのそれぞれについて偏微分し、=0と置いたもの、すなわち
∂L/∂x=0、∂L/∂y=0、∂L/∂λ=0
これが一階の条件です。最後の式は予算制約式に一致することをご確認下さい。

(∂はラウンド、ラウンドデルタ、デルンドなどと読み、偏微分の記号を表します。∂L/∂xは、ラウンドLラウンドxというふうに読みます)

2)需要関数は、1)で求めた3式をx,yについて解くと出てきます。
この場合、それぞれp_x,p_y,mについての関数になります。

実際に解いてしまうと勉強の意味がなくなるので、解法のヒントだけ。

偏微分については西村和雄『経済数学早わかり』(日本評論社)の118ページから119ページ、ラグランジュ未定乗数法については同じく154ページから155ページと、以下のURLをご参照下さい。深入りは禁物です。

参考文献:原田泰『公務員試験 経済学スーパー解法テクニック』実務教育出版260ページ以下

参考URL:http://www.okweb.ne.jp/kotaeru.php3?q=28887,http …
    • good
    • 0
この回答へのお礼

どうもありがとうございました。
本を読んでどうにか理解することができました。
大学数学がかなり必要になるということも分かって、色々な意味で勉強になりました。ありがとうございました!

お礼日時:2002/03/21 06:13

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q効用関数から限界効用を計算する。

ミクロ経済学の問題を解いており、初挑戦で参考書を見ながらやってますが、どうにもわかりません。

効用関数u=U(x1,x2)が、u=x1・x2^2で与えられている。x1、x2はそれぞれ第1財と第2財の消費量を表すものとする。

*両財の限界効用を求めよ。

という問題なのですが、どのように解けばよいのでしょうか? 偏微分すればいいといった記述もありましたが、定数は微分すると0になるので、この場合0になっちゃいませんか?

数年ぶりに微分(数学)をやるので、そもそも微分を間違ってる可能性もありますが・・・

どなたかお願いします・・・。

Aベストアンサー

>定数は微分すると0になるので、この場合0になっちゃいませんか?

ならないです。確かに、定数を微分すると0になりますが、条件式に定数は含まれていません。
結論から言えば、偏微分をすれば解けます。



>効用関数u=U(x1,x2)が、u=x1・x2^2で与えられている。

定数とは、一定の数、変数とは、変化する数のことですよね。
u=x1・x2^2で、x1,x2が定数だと考えてみましょう。
効用関数uは常に一定となってしまいます。

実は、効用関数U=(x1,x2)とは、「関数Uは変数x1、x2によって値が決定する」ことを意味しているのです。したがって、x1、x2は変数です。



最後に蛇足ながら偏微分のやり方についても触れておきます。
偏微分とは、たとえば、「x1を定数として扱い、x2が一単位増えたときの関数Uの増加分を求める」ことを指します。

∂(ラウンド)はdと同じく変化量を表し、偏微分で用いられます。
したがって、∂U/∂x1=x2^2となります。

このとき、定数扱いのx2^2は微分の対象となりませんので、消去しない点に注意してください(もしかすると、質問者の方が混乱したのはこの点かもしれません)。


同じく、x2の限界効用も求めると、∂U/∂x2=x1・2x2となります。

>定数は微分すると0になるので、この場合0になっちゃいませんか?

ならないです。確かに、定数を微分すると0になりますが、条件式に定数は含まれていません。
結論から言えば、偏微分をすれば解けます。



>効用関数u=U(x1,x2)が、u=x1・x2^2で与えられている。

定数とは、一定の数、変数とは、変化する数のことですよね。
u=x1・x2^2で、x1,x2が定数だと考えてみましょう。
効用関数uは常に一定となってしまいます。

実は、効用関数U=(x1,x2)とは、「関数Uは変数x1、x2によって値が決定する」ことを意味し...続きを読む

Qミクロ経済学・大学1年の問題2

再びわかりません^^;
私が馬鹿なのか、それとも教授が教えなさ過ぎるのか・・・。
(後者のほうであってほしい)

問>効用関数U=Xⅰ・Xⅱ
  予算制約Y=Pⅰ・Xⅰ+Pⅱ・Xⅱ
  における普通需要関数を求めよ。

これが問いなのですが、解き方は一応わかるのです。
教授が答えは黒板に書いてくださったので・・・。
でも、「ラグランジュ関数」とか、「最大化の1階条件」とか、
わけのわからない式・言葉ばかりで、ちんぷんかんぷんです。
普通需要関数というものさえ、よく理解できません。
わかりやすく説明してくださる方、お願いします!!!

Aベストアンサー

どうも、こんにちは。
ミクロ経済学の問題で苦戦なされているようですね。でも経済学なんてのは
多くの人にとって大学で初めて触れる学問ですので、その思考方法に慣れな
いうちは、わからなくて当たり前なんです。お気になさらぬよう。

おそらくその先生は数学的なとき方を教えてはるのでしょうが、これはその
問題を解く過程で出てくる意味不明な言葉どもの意味さえわかれば、決して
難しい問題ではないです。ですから、その言葉の意味を、僕の力の及ぶ範囲
でお教えいたいます。

ではまず「ラグランジュ関数」についてです。これはラグランジュ未定乗数
法と呼ばれるものに登場するもので、myou-myouさんが出されたような問題
を解く時に使うものです。で、ラグランジュ未定乗数法って、なんなの?と
思われるでしょうが…この際、そのやり方だけ覚えましょう!…アドバイス
になってない!と思われるかもしれませんが、その内容は、大学院レベルの
ものになってしまいます。だからというのも変ですが、はっきり言って、学
部レベルでその中身まで知る必要はありません。学部で問われる事はまずあ
りません。ここは機械的に覚えておいて、もし大学院に行かれることがあれ
ば、その時改めて考えればいいと思います。

次に「最大化の1階の条件」についてです。ここでは、効用関数Uについて、
XⅰとXⅱでそれぞれ偏微分した値がゼロになる、というものです。これだけ
ではなんのこっちゃわかりまへん、てことになると思いますが…。イメージ
しやすくするために、次のように考えてください。縦軸にU、横軸にXⅰをと
った平面図上に、グニャグニャ曲がりくねった効用関数が描かれている。こ
こで、UをXⅰで微分するとします。微分した値は図の上ではどう表されるか
というと、その微分した点での関数の傾き具合で表されるのです。そしてそ
の関数が最大になるポイントというのは、少なくともその傾きがゼロになら
ないとダメなのです。図で考えれば一目瞭然ですが。だから「最大化の1階
の条件」というのは、効用関数UについてXⅰとXⅱでそれぞれ偏微分した値
がゼロになる、というものなのです。(うーむ、文章じゃ伝えにくい…)
で、マメ知識として付け加えておくと、最大化の2階の条件、というものも
あって、それは効用関数UについてXⅰとXⅱでそれぞれ偏微分した値をさらに
XⅰとXⅱでそれぞれ偏微分し、その値がゼロより小さい、というものです。

最後、「普通需要関数」。わざわざ「普通」という言葉を冠しているのは、
後に学ぶ事になるであろう「ヒックスの需要関数」あるいは「補償需要関数」
と区別するためです。これらがどう違うのか、というと…
ある予算制約の下で効用を最大化するような財の組み合わせがあるとします。
この時の各財の購入量は、二つの財の価格と、所得の水準に依存します。です
から各財の購入(すなわち需要)量は、二つの財の価格と所得の関数として描
けるのです。つまり、第1財の需要量をXⅰ、第2財の需要量をXⅱとすると、
Xⅰ=Xⅰ(Pⅰ,Pⅱ,Y)、Xⅱ=Xⅱ(Pⅰ,Pⅱ,Y)
となるのです。ここで、それぞれの財の需要量は、違う財の価格水準にも依存
する事にも注意しておきましょう。これは、バターとマーガリンがあって、バ
ターの値段が下がったら、普段マーガリンを使っていた人が減る(つまりバタ
ーの価格が下がった事でマーガリンの需要量が減る)という例をイメージすれ
ばよいでしょう。
で、ヒックスの需要関数は、ある予算制約の下で効用を最大化して導出する普
通需要関数と異なり、ある効用水準の下で支出を最小化して導出するものです。
需要関数の形は
Xⅰ=Xⅰ(Pⅰ,Pⅱ,U)、Xⅱ=Xⅱ(Pⅰ,Pⅱ,U)
となるのです(括弧の中が違う)。

細かい説明は出来ませんが、こんなところでしょうか。web上でなければもっと
わかりやすくお教えできると思うのですが、ま、仕方ないですね…。
それでは頑張ってください。

どうも、こんにちは。
ミクロ経済学の問題で苦戦なされているようですね。でも経済学なんてのは
多くの人にとって大学で初めて触れる学問ですので、その思考方法に慣れな
いうちは、わからなくて当たり前なんです。お気になさらぬよう。

おそらくその先生は数学的なとき方を教えてはるのでしょうが、これはその
問題を解く過程で出てくる意味不明な言葉どもの意味さえわかれば、決して
難しい問題ではないです。ですから、その言葉の意味を、僕の力の及ぶ範囲
でお教えいたいます。

ではまず「ラグラ...続きを読む

Q市場の需要(供給)曲線の出し方

個人の需要(供給)曲線から
市場需要(供給)曲線はどう求めればいいのでしょうか?
たとえばこんな問題のとき・・
売り手1:x=3p-2
売り手2:x=2p-3
買い手1:x=ーp+10
書い手2:x=-2p+9
買い手・売り手はプライステーカーとする。
近郊需給量・均衡価格は?

私はとりあえずp=の形にして、売り手・買い手それぞれで
足して(水平和?)市場需要(供給)曲線を作ったつもりで連立してみたのですが答えとあいません^^;
ちなみに答えは価格3、需給量10です。
よろしくお願いします。

Aベストアンサー

売り手1と2の供給量合計をSとすると
S=(3p-2)+(2p-3)=5p-5

買い手1と2の需要量合計をDとすると
(D=―p+10)+(-2p+9)=-3p+19

均衡需要ということは
売り手1と2の供給量合計S=買い手1と2の需要量合計Dなので
S=D
5p-5=-3p+19
で一次方程式を解く

そうするとpの値は ***(答えは伏字) になりましたね?

そんでもってでてきたpの値を

下の両方の式に代入する
ま、均衡状態なのでどっちでも答えは同じなんだけど、検算のため、両方やってみたほうがいいのかも・・。

供給量合計 = 5p-5 =需給量
需要量合計 = -3p+19 =需給量

これで供給量合計も需要量合計も、同じ***(答え伏字)になりますよね?
(ま、均衡しているので当たり前ですが)


**ここからさき個人的な意見;
「市場の需要(供給)曲線の出し方」は大切な勉強と思いますが。そういうのは(学者とか役人になりたい場合を除けば)大学卒業後に覚えればいいことであって、在学中は「単なる数学・算数の問題」と割り切ってしまうと、精神的に楽だと思います。

経済学の若い人の質問をみると、算数や数学の手法で詰まっているひとが多いので気になりました。

**すみません、一部脱字があったので二重回答です

売り手1と2の供給量合計をSとすると
S=(3p-2)+(2p-3)=5p-5

買い手1と2の需要量合計をDとすると
(D=―p+10)+(-2p+9)=-3p+19

均衡需要ということは
売り手1と2の供給量合計S=買い手1と2の需要量合計Dなので
S=D
5p-5=-3p+19
で一次方程式を解く

そうするとpの値は ***(答えは伏字) になりましたね?

そんでもってでてきたpの値を

下の両方の式に代入する
ま、均衡状態なのでどっちでも答えは同じなんだけど、...続きを読む

Q【需要の価格弾力性】の計算式の構造を教えてください。

経済学(高校三年生)の需要弾力性を求める計算式です。
なさけないことにバリバリの文系で、計算式が大苦手です・・。
試験範囲の一部に需要の弾力性を求める計算問題が入り込み、
画像の内容のような式が出題されることになりました。


●問題文、定義式↓下記

http://nhk.upkita.net/up/nhk7798.jpg

問題内容は画像を参照して頂ければ分かる様に製作したつもりです。
問題と定義式はきっちりプリントを写したものなので、確かなモノなのですが、
途中の計算式・最終的に解が正解しているか不安で一杯です。

途中の式、解は黒板のものを写しただけで
(※厄介な事に写し間違いもあるかもしれないため、解と式が
正解しているかさえ、あやしいのが実情です…泣)

自分で構造を理解して解いていないので・・
”途中の式の数字の意味”、”何がどう代入されているのか”などの
式自体の構造が分かりません・・・。
式の左側、P=300を代入して式を片付けていくあたりは
一応理解できているのですが、右側の
=(+0.5)=300/400~への式になぜ繋がっていくかの意味が
理解できていません・・・。情けない限りでございます。。

本当に勝手ではありますが・・・計算式に明るくて優しい方の
ご支援を・・宜しくお願いいたします!!

経済学(高校三年生)の需要弾力性を求める計算式です。
なさけないことにバリバリの文系で、計算式が大苦手です・・。
試験範囲の一部に需要の弾力性を求める計算問題が入り込み、
画像の内容のような式が出題されることになりました。


●問題文、定義式↓下記

http://nhk.upkita.net/up/nhk7798.jpg

問題内容は画像を参照して頂ければ分かる様に製作したつもりです。
問題と定義式はきっちりプリントを写したものなので、確かなモノなのですが、
途中の計算式・最終的に解が正解しているか不安で...続きを読む

Aベストアンサー

需要の価格弾力性とは価格が1%変化したとき、
需要が何%変化するかというもので、
定義式e=(うんぬん)というのがそれを求める式です。
式e=(うんぬん)でいう変化率は、
変化率の定義の式で求められます。

価格の変化率を実際に求めてみると、
元の値段=400(でいいのかな?)
変化後の値段=300
増加分=変化後の値段-元の値段=-100
変化率=増加分÷もとの値段=-100÷400=-1/4 です。
需要の変化率は需要関数X=(うんぬん)を使って、
もとの価格の時の需要、変化後の価格の需要、増加分を求めてから
変化率の定義式に代入します。
需要関数のPは価格のことです。

以上の過程で求めた数を定義式e=(うんぬん)に代入すると
e=-(ΔX/-100)*400/Xとなります。
※ΔX、ΔPは需要と価格の増加分、
 X、Pはもともとの価格とそのときの需要を表します。

Qミクロ経済学 困っています。 

明日の朝からテストなのですが過去問をやって1問もわからないのです。 すみませんが教えていただけないでしょうか?

独占企業の需要関数がp=150-q、総費用関数がTC=1/2q二乗+20で与えられるとする。
1 独占均衡での価格、産出量、利潤を求めよ。
2 ラーナーの独占度
3 消費者余剰、生産者余剰、死荷重を求めよ。ただしpは価格 qは生産量

ある財の需要関数がx=100-3pのとき
1 p=20の時の需要の価格弾力性E(Eの右下に小さい0があります)を求めよ。
2 p=20のとき価格が20%増加すると需要量は何%増加するか。
3 x=70の需要の価格弾力性を求めよ。
4 需要の価格弾力性が3になるときの価格pと需要量xを求めよ。ただしxは需要量、pは価格

勉強していない僕が悪いと言われればそれまでですが本当に全くわからないのですみませんがよろしくお願いします。

Aベストアンサー

1)
独占企業の利潤最大化の条件は限界費用MC=限界収入MRですからMC=MRとなる点で数量が決定します。
独占企業の限界費用はTCをqで微分して求めますから
d(TC)/dq=q
となります。
一方、MRは企業の収入を求めてqで微分することになります。企業の収入は産出量*価格ですから
pq=(150-q)q=150q-q^2
になります。これをqで微分するわけですから
MR=d(pq)/dq=150-2q
になります。(このとき、MRが需要関数の傾き2倍の直線になることを確認しておきましょう。)
そして、MC=MRとなるqを求めればそれが産出量です。
q=150-2q
なので、
q=50
が産出量です。これを需要曲線に代入すれば価格が求められます。つまり
p=100
になります。次に利潤ですが、利潤は収入から費用を引いたものですから
利潤=pq-TC
です。ここに上で求めた価格・数量を代入すれば企業の利潤は3770になります。

2)
ラーナーの独占度は、(価格-限界費用)/価格で求めます。
(p-MC)/p=(100-q)/100=(100-50)/100=1/2
になります。

3)
この問題は図を使って回答するのが良いと思います。以下に図を添付しますので、それを見ながら読んでください。
まず、競争市場であれば、P=MCとなる点Fが均衡点となります。ここではq=75、p=75になります。
MC=MRとなる点はEで独占均衡点はDになります。このときの消費者余剰は△GADの面積ですから、
50*50/2=1250
になります。
次に、生産者余剰は台形ADEOの面積です。
台形ADEO=四角形ACED+△COE=50*50+50*50/2=3750
になります。
最後に死荷重ですが、これは完全競争時の全体の余剰△GOFと独占均衡時の余剰GOEDを比べて、減ってしまった余剰の部分ですから△DEFになります。
△DEF=50*25/2=625
になります。

次の問題です。
1)
需要の価格弾力性は価格が1%上昇(下降)したときの需要の減少(増加)率ですから、「需要の減少(増加)率/価格の上昇(下降)率」の絶対値で求めます。
P=20のときの需要の価格弾力性E_0を求めます。
価格を20から21にしたときに需要量は40から37に減少します。
((37-40)/40)/((21-20)/20)の絶対値になりますから、
E_0=1.5
になります。

2)
1)で求めたとおり、P=20のときの需要の価格弾力性は1.5です。これは価格を1%変化させたら需要は1.5%変化する、ということですから、価格を20%変化させたら、需要は30%変化します。

3)
x=70のとき
p=10になります。
pを10から11にしたら、需要量は70から67になります。なので、1)と同様に求めます。
((67-70)/70)/((11-10)/10)=3/7
になります。

4)
pをp+1に変化させたとき、需要量は100-3pから100-3(p+1)=97-3pに変化します。これを1)や3)でやった式に代入した答えが3になるときのpを求めれば良いわけです。
((97-3P-100+3p)/100-3p)/((p+1-p)/p)=3
これをpについて解けば
p=25
になります。p=25を需要関数に代入すれば
x=25
になりますから、需要の価格弾力性が3になる価格pと需要量xは
p=25
x=25
になります。

1)
独占企業の利潤最大化の条件は限界費用MC=限界収入MRですからMC=MRとなる点で数量が決定します。
独占企業の限界費用はTCをqで微分して求めますから
d(TC)/dq=q
となります。
一方、MRは企業の収入を求めてqで微分することになります。企業の収入は産出量*価格ですから
pq=(150-q)q=150q-q^2
になります。これをqで微分するわけですから
MR=d(pq)/dq=150-2q
になります。(このとき、MRが需要関数の傾き2倍の直線になることを確認しておきましょう。)
そして、MC=MRとなるqを求めればそれが産出量で...続きを読む

Q社会的限界費用の問題です、解き方がわかりません。

(問題)
 製品の需要曲線がD=130-2P、供給曲線がS=-50+4Pで与えられている。(いずれのPも価格、D   は需要量、Sは供給量)。この工場から沿岸の海に排出される有害物質のために、沿岸漁業の生  産量が激減している。その漁業への被害(C)は、工場での供給量(Q)(生産量に等しいものとする)  に比例し、C=20+7.5Qであるとするとき、
(質問1)
 この製品一単位が工場から生産されるごとに、すなわちQが一単位増加するごとに漁業への被害 cは、( )だけ増加する。これが生産一単位当たりの汚染費用である。括弧内に 入る数値はいくらか。
(質問2)
 有害物質の漁業への影響を考慮した最適点はどこになるか。価格と取引量を答えなさい。
(質問3)
社会にとって最適な生産量はどこであるか、総余剰の大きさに触れながら説明しなさい。
(質問4)
社会にとって最適な生産量を達成するために、政府が取りうる政策について説明しなさい。
 以上が、問題と質問です。参考書などで勉強しておりますが、回答を導きだすことに困っておりま  す。わかる方、よろしくお願いいたします。

(問題)
 製品の需要曲線がD=130-2P、供給曲線がS=-50+4Pで与えられている。(いずれのPも価格、D   は需要量、Sは供給量)。この工場から沿岸の海に排出される有害物質のために、沿岸漁業の生  産量が激減している。その漁業への被害(C)は、工場での供給量(Q)(生産量に等しいものとする)  に比例し、C=20+7.5Qであるとするとき、
(質問1)
 この製品一単位が工場から生産されるごとに、すなわちQが一単位増加するごとに漁業への被害 cは、( )だけ増加する。これが生産一単位当...続きを読む

Aベストアンサー

条件をクリアーしたので回答します。外部費用関数はC=20 + 7.5Qと与えられているので、外部限界費用=7.5=1単位の追加的生産にかかる外部費用。それから、逆供給関数=私的限界費用=12.5 + Q/4であることに注意すると、

社会的限界費用=私的限界費用+外部限界費用=12.5 + Q/4 + 7.5 = 20 + Q/4
社会的限界便益=逆需要曲線=65 - Q/2

となる。社会的に望ましい生産量は社会的限界便益=社会的限界費用ののとき成立するから、

   65 -Q/2 = 20 + Q/4

(3/4)Q = 45

Q = 60

が最適生産量である。(あなたが計算した、外部費用を無視し、私的費用だけを考慮した生産量Q=70は社会的には過大であることがわかる。)

総余剰は社会的限界便益曲線(需要曲線)より下の部分の面積から社会的限界費用き曲線のより下の部分の面積を差し引いた値に等しいことに注意すると、これら2つの曲線が交わる生産量Q=60のとき、その値(社会的総余剰)が最大化されることがわかる。これらの2つの曲線の図を描いて確かめなさい。

Q=60を実現する1つの方法は外部費用を内部化することだ。そのためには、1単位当たり7.5(円)の物品税(ピグー税と呼ぶ)をこの財に課し、あとは市場にまかせる。このとき、均衡においてQ=60が達成されることを確かめてください。

条件をクリアーしたので回答します。外部費用関数はC=20 + 7.5Qと与えられているので、外部限界費用=7.5=1単位の追加的生産にかかる外部費用。それから、逆供給関数=私的限界費用=12.5 + Q/4であることに注意すると、

社会的限界費用=私的限界費用+外部限界費用=12.5 + Q/4 + 7.5 = 20 + Q/4
社会的限界便益=逆需要曲線=65 - Q/2

となる。社会的に望ましい生産量は社会的限界便益=社会的限界費用ののとき成立するから、

   65 -Q/2 = 20 + Q/4

(3/4)Q = 45

Q = 60

が最適生産量であ...続きを読む

Qナッシュ均衡をわかりやすく説明してください。

最近、ジョン・ナッシュの伝記を読んでいるのですが、
「ナッシュ均衡」がいまいち良くわかりません。
詳しい方、本質をわかりやすく、教えていただけると
幸いです。よろしくお願いします。

Aベストアンサー

パソコンを買うことを例にあげましょう。(なんでもいいのですが)

 皆が、パソコンを買おうとお店に行きます。この場合パソコンの価格は、市場に出ているパソコンの供給量と、パソコンを欲しがる人の需要のバランスで決まります。つまりパソコンが余ると値段が下げないと売れないでしょうし、逆に足りないと少々高くても売れるでしょう。でも、どこかで価格はそれなりに落ち着くことになるだろう。こういう考え方を市場均衡といいます。

 さて、ここである店が激安パソコンを売り始めました。すると皆は、その激安パソコンを買おうとするので、他の店は大弱りです。それで結局、他の店も全部激安パソコンを売り始めました。一度そうなると、今度はそう簡単にはどの店も価格を元の値段には戻せなくなってしまいます。このように、相手の戦略(激安パソコンを売る)に対してお互いが最善を尽くしている(皆、激安パソコンを売っている)状況でつりあっている(身動き取れない)ことをナッシュ均衡と言います。
 ナッシュはこういう状況が起こり得ることを数学的に証明しました。きちんとした証明はゲーム理論や経済学の本等を調べてください。

パソコンを買うことを例にあげましょう。(なんでもいいのですが)

 皆が、パソコンを買おうとお店に行きます。この場合パソコンの価格は、市場に出ているパソコンの供給量と、パソコンを欲しがる人の需要のバランスで決まります。つまりパソコンが余ると値段が下げないと売れないでしょうし、逆に足りないと少々高くても売れるでしょう。でも、どこかで価格はそれなりに落ち着くことになるだろう。こういう考え方を市場均衡といいます。

 さて、ここである店が激安パソコンを売り始めました。すると皆は...続きを読む

Q規模に関して収穫??のチェックの仕方分かりません。

生産関数で要素に関して収穫??を確かめたい時は偏微分をして生産量が逓減しているかどうか見れば良いのだと思いますが、規模に関して収穫??をチェックしたいときは全ての生産要素を動かさなければならないと思います。

そのやり方が分からないのですが教えていただけませんでしょうか??

Aベストアンサー

>規模に関して収穫一定ならば一次同次で一次同次ならば規模に関して収穫一定ということでしょうか?

そうです。数学の言葉では一次同次、経済学の言葉で規模に関して収穫一定というだけで両者は全く同じものです。

チェックの方法ですが、定義に従って計算するしかありません。

一般に関数Z=f(x,y)がk次同次関数とは
(t^k)Z=f(tx,ty)
を満たす関数のことですね。
それで、kの大きさをチェックしてやればいいということになります。
f(tx,ty)
を計算してみて
(t^k)Z=f(tx,ty)
のkが
k<1⇒規模に関して収穫逓減
k=1⇒規模に関して収穫一定
k>1⇒規模に関して収穫逓増
ですから、kがどういう値になるかをチェックすることになります。


z=A[αx^(-ρ)+(1-α)y(-ρ)]^(-1/ρ)
は規模に関して収穫一定でしょうか?
xのところにtxを、yのところにtyを代入してみますと
A[α(tx)^(-ρ)+(1-α)(ty)(-ρ)]^(-1/ρ)
=A[t^(-ρ){αx^(-ρ)+(1-α)y(-ρ)}]^(-1/ρ)
=At[αx^(-ρ)+(1-α)y(-ρ)]^(-1/ρ)
=tz
ですからk=1で規模に関して収穫一定です。

z=a(x^2)+bxy+c(y^2)
は同様にして、2次同次関数(k=2)であること、すなわち規模に関して収穫逓増であることが確かめられます。やってみてください。(分からなければ補足してください)

このように定義に帰ってチェックするほかありません。

>規模に関して収穫一定ならば一次同次で一次同次ならば規模に関して収穫一定ということでしょうか?

そうです。数学の言葉では一次同次、経済学の言葉で規模に関して収穫一定というだけで両者は全く同じものです。

チェックの方法ですが、定義に従って計算するしかありません。

一般に関数Z=f(x,y)がk次同次関数とは
(t^k)Z=f(tx,ty)
を満たす関数のことですね。
それで、kの大きさをチェックしてやればいいということになります。
f(tx,ty)
を計算してみて
(t^k)Z=f(tx,ty)
のkが
k<1⇒規模...続きを読む

Qミクロ経済:超過需要関数について

消費者の効用関数が、
          u=x1x2
で与えられていて二財の初期保有量が
          e1=2,e2=1
であるときに、消費者の需要関数を求めよ。
という問題があって、

私はu=x1x2に予算制約式であるx1p1+x2p2=mという式を代入して

uが最大になるx1とx2を考えたんですが、そうすると、テキストに載っている答えである

z1=(-4p1+p2)/3p1,z2=(4p1-p2)/3p2

にたどりつけません。。。。一体どのように解けばいいのでしょうか??おしえてください。。。

Aベストアンサー

ラグランジュ乗数法を知らなければ普通に、予算制約式をx1かx2について解いて、効用関数に代入し、後は微分してゼロとおきましょう。

Q費用関数の求め方。

生産関数y=x1x2をもつ企業の費用関数を求めなさい。の解答をお願いします!解き方を教えてください。

Aベストアンサー

全部解くとルール違反になるので、概要だけです。

一般的にいえば、生産関数は
y = f(x)
と書きます。xは投入要素ですが、複数あるのでベクトルになります。生産関数はこの問題では y=x1x2 であり、x=(x1, x2)です。

今、簡単化のためにこの企業はプライステイカーであるとします。すると費用関数は
C(y) = min{p1x1 + p2x2} s.t. y≦f(x)
と書けます。つまり、ある生産物をyだけ作るのに必要な最小限のコストですね。

後はこの問題を、例えばラグランジュ乗数法を使って解けば良いです。


人気Q&Aランキング