高校生じゃないけど、高校数学勉強してます。
よくあるマスター本でです。

そのなかの法則として
“等比数列の連立方程式は、両辺を割る”
なんてのがあります。

中学で数学をやめた私は連立方程式と言うと
みなさんご存知の方法を連想します。

その問題だとこんな連立方程式です。
ar=8 -----1
ar^3=128 -----2

1÷2 ar^3  128
    ----- = ----
     ar   8

これを解くと、r=4 a=2(もちろん+-)

わからないのは
1と2の割り方。わるとあんな式になるのがわからない。

問題全部かけなくてすんませんが、質問の意味わかる方、
よろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (4件)

質問に対して回答いたします。


まず、Scotty99 さんが疑問を持たれているのは正しいです。
なぜなら(1)式を(2)式で割れば、すなわち(1)÷(2)を計算すると

ar^3    128
----- = -----
ar      8



にはなりません。ちなみに(2)÷(1)を計算すると上の式になります。

(1)÷(2)を計算すると正しくは

ar      8
----- = ----
ar^3    128

となります。


(割られる式)÷(割る式)

    (割られる式)
=--------
     (割る式)

となります。

よく分母・分子が逆になってしまう間違えが多いので気をつけてください。

以下は(2)÷(1)で考えることとします。

さて(1)式も(2)式も方程式です。
すなわち(1)、(2)ともに左辺と右辺がイコールで結ばれています。
つまり今、(1)、(2)それぞれ左辺の値と右辺の値が等しいです。

(2)÷(1)をするというのは、
(2)の左辺と右辺の値両方ともそれぞれ(1)の値で割るということです。
(1)は左辺と右辺の値が等しいのでどっちで割っても構いません。

でも後の計算のことを考えたら、

(2)の左辺は同じ文字aとrが入った(1)の左辺で割り、
(2)の右辺は数なので、(1)の右辺で割ったほうが良いですね。
(2)の左辺を(1)の左辺で割り、(2)の右辺を(1)の右辺で割ると
同じ値を同じ値で割るのだから
当然値が等しくなる上、きれいに約分することができます。

約分すると
  r^2=16
というじつにシンプルな式になります。

おそらくScotty99さんは(2)÷(1)の意味は
「方程式まるごと方程式で割る」
というイメージがあったと思います。

そうではなく割り算は必ず(割られる式)と(割る式)が存在するので
割り算をするときはどれが割られる式でどれが割る式かつねに意識してください。
割られる式、割る式のところに方程式がくることはありません。
普通の値がきます。

今は(2)÷(1)で説明しましたが、当然(1)÷(2)で計算しても
最終の答えは同じになります。試してみてください。
    • good
    • 0
この回答へのお礼

>つまり今、(1)、(2)それぞれ左辺の値と右辺の値が等しいです。

ここわかりやすかったです。拙い質問もつたわったようですね。
わざわざこんなに書いてくださてありがとうです。
これからもよろしくお願いします。

お礼日時:2002/03/16 23:13

あと、


128÷8

128/8(分数)
は同じ意味です。
    • good
    • 0
この回答へのお礼

わざわざ補足どうもです。

お礼日時:2002/03/16 23:08

左辺は左辺同士、右辺は右辺同士割る、ということです。


ただし、(2)÷(1)が正しいようですが。

この場合、
(左辺)=ar^3÷ar=r^2
(右辺)=128÷8=16
これから、(左辺)=(右辺)よりrが求まり、式に代入するとaも求まります。

根拠としては、(1)式では、右辺と左辺が等しいです。(2)式でも、右辺と左辺は等しいです。ですから、(1)と(2)についてそれぞれ計算したものも、右辺と左辺は等しくなるはずです。

こんなんで回答になりましたでしょうか?
    • good
    • 0
この回答へのお礼

解決の糸口いみえてきました。
もうちょっとがんばります。

お礼日時:2002/03/16 23:08

(ar^3)/(ar)という式を1と2を使って書き換えていくと、


(ar^3)/(ar)=128/(ar) …1を使用
      =128/8   …2を使用
となります。それを略記して1÷2と書いている、と考えてはいかがでしょうか。

この方法で理解できなければ補足願います。
    • good
    • 0
この回答へのお礼

うまく質問の真意が伝わりませんでしたね。ちゃんと書かなくてはいけませんでした。でも回答ありがとうです。
またお願いします。

お礼日時:2002/03/16 23:07

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q連立方程式の解き方がいまいちぱっとしません だいたいの連立方程式は右図のようにしますがこの問題のよう

連立方程式の解き方がいまいちぱっとしません だいたいの連立方程式は右図のようにしますがこの問題のように勝手に足し合わしたりしていんでしょうか。

Aベストアンサー

肝心な数学の基礎が全く脱落しているようです。中学校一年の数学の教科書を取り出してしっかり復習しましょう。
・・・冗談でも嫌味でもなく、本当に大事なところが抜けてしまっている・・・深刻です。

小学校の算数から中学の数学になったときに計算が大きく変わりましたね。
1) 引き算は、その数の負数を加えること。
  負数とはその数に加えると0になる数
2) 割り算は、その数の逆数をかけ合わせること・
  逆数はその数にかけると1になる数
・・・この二つのことで、未知数であっても初めて計算が自由に扱えるようになった。
 小学校では、5個×3=15本だったし、3-2≠2-3、2÷3=3÷2だったのが、
       5(本)×3 = 3× 5 (本)、3+(-2)=(-2)+3、2×(1/3) = (1/3)×2
3) 両辺が=の関係である時、両辺に同じ処理をしても=の関係は変わらない。
 2x - 4 = 6  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄★
すなわち
 2x + (-4) = 6
  両辺に 4を加えると
 2x + (-4) + 4 = 6 + 4
 2x = 10      結果であるテクニックとしての[移項]は知っている
  両辺に(1/2)をかける
 2x × (1/2) = 10 × (1/2)
  交換則で
 x × 2 ×(1/2) = 5
  x = 5

たったこれだけを中学一年で一年かけて徹底的に学んだはず・・・中学数学の半分はこれと言ってもよい。
底が抜けているので、いくら解き方を覚えても役には立たない。
 [移項]処理は、「両辺に同じ処理をしても=の関係は変わらない」ことの結果にしか過ぎない。その結果--解き方だけ覚えて、理数科でもっとも肝心な「理由」を身につけてこなかった---でしょ!!!

 だから連立方程式は、未知数を一つずつ消していくという「消去法」というテクニックしか身についていない。繰り返しますが、理科や数学は解き方をいくら覚えても、せいぜい、その時の試験しかパスしない。

例えば、
 a + b = 0
 b - a + c = 0
 a + c - 1 = 0
という式があったとします。どうやって解きますか?
掃き出し法で解いてみましょう。

1) まず、式を下記のように変形します。
  a + b   = 0  一番下の式を加え
 -a + b + c = 0
  a   + c = 1

 2a + b + c = 1 中の式を引く
 -a + b + c = 0
  a   + c = 1
★ 両辺が=の関係である時、両辺に同じ処理をしても=の関係は変わらない。
   ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄★
  ここはわかりますか>>>だってすべての式は=で結ばれている。

 3a     = 1 3で割る
 -a + b + c = 0
  a   + c = 1

  a     = 1/3
 -a + b + c = 0
  a   + c = 1  一番上の式を引く

  a     = 1/3
 -a + b + c = 0  一番上の式を加えて
      c = 2/3

  a     = 1/3
    b + c = 1/3 一番下の式を引く
      c = 2/3

  a     = 1/3
    b   = -1/3
      c = 2/3

 これは「掃き出し法」と言われる解き方で、連立方程式を解く一番たくさん使われている方法です。特にコンピューターで計算しやすいためにコンピュータで解くときは100%この方法です。

 下記に、これを

  1  1  0 = 0
 -1  1  1 = 0
  1  0  1 = 1

と書き直して、簡単にする方法を説明しています。

参考)これってどうやって解くんですか?? - 数学 | 教えて!goo( https://oshiete.goo.ne.jp/qa/9194001.html )

 何度も繰り返しますが、「解き方」を覚えて、それを使って解くのではなく、なぜその方法で解けるのかを理解するようにしましょう。そうすれば、見たことない問題でも解けようになる。公式忘れたって公式をその場で作ればよい。

肝心な数学の基礎が全く脱落しているようです。中学校一年の数学の教科書を取り出してしっかり復習しましょう。
・・・冗談でも嫌味でもなく、本当に大事なところが抜けてしまっている・・・深刻です。

小学校の算数から中学の数学になったときに計算が大きく変わりましたね。
1) 引き算は、その数の負数を加えること。
  負数とはその数に加えると0になる数
2) 割り算は、その数の逆数をかけ合わせること・
  逆数はその数にかけると1になる数
・・・この二つのことで、未知数であっても初めて計算が自由に...続きを読む

QX^2+Y^2=r^2 の両辺をXで微分すると、X+YY’=0 

X^2+Y^2=r^2 の両辺をXで微分すると、X+YY’=0 
なぜこうなりますか?
2X+2Y=0
ではないでしょうか?
これを解いた過程を教えてください。

Aベストアンサー

dy
―=
dx

dy dt
―・―
dt dx
の公式使います

dy^2
―  =
dx

dy^2 dy
―  ―  =
dy  dx

 dy
2y―
 dx

dy/dxっていうのはy'と書くこともできますから

2x+2yy'=0⇔x+yy'=0になります

Q分数の連立方程式の解き方を教えてください。

分数の連立方程式の解き方を教えてください。
 a=4500000+60000/260000b
 b=4250000+30000/180000a

Aベストアンサー

[問題] は
 a = 4500000 + (60000/260000)b
 b = 4250000 + (30000/180000)a
なのですね。

ならば、
 a = 4500000 + (60000/260000)b   (1)
   ↓ 代入して、
 b = 4250000 + (30000/180000)a
  =4250000 + (30000/180000){4500000 + (60000/260000)b}
を、まず解くのでしょう。

b の項を左に集めれば、
 b - (30000/180000)(60000/260000)b = 4250000 + (30000/180000)4500000
 b(25/26) = 4250000 + 750000 = 5000000
 b = 200000*26 = 5200000   (2)

ここで (1) へ戻り、
 a = 4500000 + (60000/260000)*5200000
  = 4500000 + 60000*20
  = 4500000 + 1200000
  = 5700000

…かな?
検算してみて頂戴。。
  

[問題] は
 a = 4500000 + (60000/260000)b
 b = 4250000 + (30000/180000)a
なのですね。

ならば、
 a = 4500000 + (60000/260000)b   (1)
   ↓ 代入して、
 b = 4250000 + (30000/180000)a
  =4250000 + (30000/180000){4500000 + (60000/260000)b}
を、まず解くのでしょう。

b の項を左に集めれば、
 b - (30000/180000)(60000/260000)b = 4250000 + (30000/180000)4500000
 b(25/26) = 4250000 + 750000 = 5000000
 b = 200000*26 = 5200000   (2)

ここで (1) へ戻り、
 a = 4500000 + ...続きを読む

Q(x^2)'=2x, (x^1)'=1, (1)'=0, (x^-1)'=-x^-2 そして ∫x^-1 dx = ln|x| + C

(x^2)' = 2x^1 ⇔ ∫2x dx = x^2 + C
(x^1)' = 1 ⇔ ∫1 dx = x + C
※ ln(x)' = x^-1 ⇔ ∫x^-1 dx = ln|x| + C
(x^-1)' = -x^-2 ⇔ ∫-x^-2 dx = x^-1 + C
(x^-2)' = -2x^-3 ⇔ ∫-2x^-3 dx = x^-2 + C
ですが、

なぜ、※のところだけイレギュラーにになるのでしょう?

はるか昔、高校のときに導出方法は習いましたが、
イメージとしては、どう捉えればよいでしょう?

証明等は無くても構いませんので、
直感に訴える説明、あるいは、逆に高度な数学での説明などができる方いらっしゃいましたら、お願いします。

(もしかしたら、高度な数学では、イレギュラーに見えなくなったりしますか?)

Aベストアンサー

sanoriさん、こんにちは。

釈迦に説法みたいな話しかできませんが…。

(x^α)' = α x^{α-1} …(1)

は、α=0 でも、(x^0)' = 0・x^{-1} = 0 (x≠0)ということで成り立ち、実はイレギュラーというわけでもなかったりします。

(x^2)' = 2x^1
(x^1)' = 1x^0 = 1
(x^0)' = 0x^{-1} = 0
(x^{-1})' = (-1)x^{-2} = -x^{-2}
(x^{-2})' = (-2)x^{-3} = -2x^{-3}

ということなので。。。

つまり、(ln(x))') = 1/x = x^{-1} はこのリストとは別の話と解釈するわけです。

積分のほうも、
∫x^-1 dx = ln|x| + C …(2)
のかわりに、
∫0dx = ∫0x^{-1}dx = 0 + C' = x^0 + C
があると思えば、イレギュラーではなくなります。
(2)は、
∫nx^{n-1}dx=x^n+C …(3)
のリストに元々登場していないと解釈するわけです。

また、(3)の両辺をnで割って、
∫x^{n-1}dx = (1/n)x^n + C …(4)
のリストとして考えると、右辺のほうに1/nがあるので、そのリストからは最初からn=0は除外して考えなければなりません。

たまたま、∫x^{-1}dx = ln|x| + C となるので、はまりそうに見えますが、もともと除外していたところに、後から違う種類のものを持ってきてはめ込んだだけと解釈すれば、そこがイレギュラーになるのは不思議ともいえなくなってきます。

また、(4)のリストの立場で考えると、(分母にnがあるので)n=0を除外しなければならないけど、一方、積分∫x^{-1}dxというものは厳然として存在しているので、その隙間に、べき関数とは全く違う関数 ln|x|+C が入ってきているという言い方もできます。これは、べき関数だけでは一覧表が完成しないところに、logでもって完成させているということにもなります。つまりlogという関数は、べき関数のリストの「隙間」に入ってきて、「完成させる」というイメージです。

sanoriさん、こんにちは。

釈迦に説法みたいな話しかできませんが…。

(x^α)' = α x^{α-1} …(1)

は、α=0 でも、(x^0)' = 0・x^{-1} = 0 (x≠0)ということで成り立ち、実はイレギュラーというわけでもなかったりします。

(x^2)' = 2x^1
(x^1)' = 1x^0 = 1
(x^0)' = 0x^{-1} = 0
(x^{-1})' = (-1)x^{-2} = -x^{-2}
(x^{-2})' = (-2)x^{-3} = -2x^{-3}

ということなので。。。

つまり、(ln(x))') = 1/x = x^{-1} はこのリストとは別の話と解釈するわけです。

積分のほうも、
∫x^-1 dx = l...続きを読む

Qこの連立方程式の解き方を具体的に教えて下さい(恥ずかしながら忘れてしまいました(泣)) 答えは書いて

この連立方程式の解き方を具体的に教えて下さい(恥ずかしながら忘れてしまいました(泣))
答えは書いてあるのですが、連立方程式の解き方がカットされていて……


よろしくお願いします。

Aベストアンサー

上の式を360倍します。
 2x+3y=4320

下の式は150倍して変形します。
 x+y=1800
 x=1800-y

このxの値を先の式に代入します。
 2(1800-y)+3y=4320
 3600-2y+3y=4320
 y=4320-3600=720

このyの値を3番目の式に代入します。
 x=1800-720=1080

x=1080、y=720です。

Q連立方程式x^2+y^2=1...(1)、x+y=1...(2)

連立方程式x^2+y^2=1...(1)、x+y=1...(2)
をとけ。
2つI、IIの同値関係が考えられると思うのですが、
Iのほうが正しくて、IIのほうは間違っていると
見抜けないと間違った方で計算して言ってしまうことになります。
この場合は簡単な式なので、分かるのですが、判断しづらいとき
もあります。同値の関係式を作っていく上でどんなことに
注意していけばよいのでしょうか。よろしくおねがいします。
(1)と(2)から、x^2-x=0...(3)
I(1)かつ(2)<->(2)かつ(3)
II(1)かつ(2)<->(1)かつ(3)

Aベストアンサー

(1)をf(x,y)=0, (2)をy=g(x)とすると
(1)に(2)を代入した(3)はf(x,g(x))=0となります。
この時(2)と(3)からは(1)が導けますが、(1),(3)からは必ずしもy=g(x)とならずに
例えば今回の場合はy=±(1-x)となってしまうということです。

Qこの連立方程式の解き方を教えてください

この連立方程式の解き方を教えてください

Aベストアンサー

分数だから、ややこしく感じるのでしょうね。
上の式は両辺を15倍に、下に式は両辺を12倍してみて下さい。
①、② の様な整数の式になると思います。

3(2x+3y)=150ー5y ・・・①
9xー4(yー3)+12x=60 ・・・②

①を整理すると、6x+9y=150 ・・・③
②を整理すると、21x-4y=48 ・・・④

③、④ ここまでくれば、普通の連立方程式ですから
簡単に解けると思いますが。
 因みに、x=4,y=9 になると思いますが、計算は確認して下さいね。

Q集合論に強い方、R^2=平面、R^1=直線、R^0=原点?、またR^φやφ^φの意味?

集合論に強い方、お願いいたします。
Rは実数として、

R^2=平面、R^1=直線、R^0=原点

と思いますが、どのように意味づけされるかというと、
R^2={(x,y)|x∈R,y∈R}
だと、R^0がうまく説明できないので、
R^2={f|f:2点集合{x,y}→R 写像}
とすればうまくいきそうですが、
それで
R^0=原点
というのがうまく説明できるでしょうか?

また、
R^φやφ^φ
の意味付けをご存知の方は教えていただけ無いでしょうか。

Aベストアンサー

> R^2=平面、R^1=直線、R^0=原点

「原点」ではなく,ただ「点」ですね(R^1 が「x軸」ではないように)。

A^Φ={Φ} です。Φ ではありません。
Φ^Φも{Φ} です。0^0=1 肯定派の論拠の1つです。

Q連立方程式の解き方

 0.8x-0.6y=6500
 
 0.4y-0.2x=1400

の連立方程式の解き方と途中式を教えて下さい。

Aベストアンサー

係数が小数のままだと計算を間違えやすいので、
両辺を10倍なり100倍なりすることにより桁を上げます。

0.8x-0.6y=6500
両辺を10倍すると
8x-6y=65000
両辺を2で割ります。
4x-3y=32500・・・※1

0.4y-0.2x=1400
両辺を10倍すると
4y-2x=14000
みやすいように項を入れ替えます。
-2x+4y=14000
両辺を2で割ります。
-x+2y=7000・・・※2

※1と※2の連立方程式となります。

ここでは加減法で解いてみます。
(※1)+4×(※2)
4x-3y=32500
-4x+8y=28000

5y=60500
y=12100

y=5500を※2に代入
-x+2*12100=7000
-x=-17200
x=17200

よってx=17200,y=12100・・・答え

別解)代入法で連立方程式を解く
※2よりx=2y-7000・・・※3
これを※1に代入
4(2y-7000)-3y=32500
8y-28000-3y=32500
5y=60500
y=12100
これを※3に代入すると
x=2*12100-7000=17200

係数が小数のままだと計算を間違えやすいので、
両辺を10倍なり100倍なりすることにより桁を上げます。

0.8x-0.6y=6500
両辺を10倍すると
8x-6y=65000
両辺を2で割ります。
4x-3y=32500・・・※1

0.4y-0.2x=1400
両辺を10倍すると
4y-2x=14000
みやすいように項を入れ替えます。
-2x+4y=14000
両辺を2で割ります。
-x+2y=7000・・・※2

※1と※2の連立方程式となります。

ここでは加減法で解いてみます。
(※1)+4×(※2)
4x-3y=32500
-4x+8y=28000

5y=60500
y=12100

y=5500を※2に代入
-x+2*12100=7000...続きを読む

Qny^2=x^3+ax^2+bx+c上の点全体とy^2=x^3+anx

ny^2=x^3+ax^2+bx+c上の点全体とy^2=x^3+anx^2+bn^2x+cn^3上の点全体の間の1対1対応を与える簡潔な変数の1次変換を求めるという問題が解けなくて困っています。yをy/n^2に、xをx/nに置き換えよ、とヒントには書いてあるのですが…
解き方がわかる方はぜひ教えてください。

Aベストアンサー

>yをy/n^2に、xをx/nに置き換えよ、

 ここまで分かっているのですから、これを行列で表せばよいのではないですか。

(1/n 0)
(0 1/n^2)


人気Q&Aランキング