初めまして。
とある波動関数の問題を解いていた際に行き詰ってしまい、いくら調べても良く分からなかったので質問をさせて頂きました。
次のようなシュレディンガー方程式
d^2ψ/dx^2 + (2m/h^2)[E - V(x)]ψ(x) = 0が与えられたとき両辺をa-εからa+εまで積分するとき、波動関数の一階微分dψ/dxが連続であることを示せという問題です。
ここでV(x)は連続であると仮定します。
一応回答はあるのですが、次のような記述がありました。
「V(x)は連続であるから、lim(ε→0) V(a±ε) = V(a)である。ψ(x)が連続であることは既知なので、
『lim(ε→0) (2m/h^2)∫(a-εからa+εまで積分)[V(x)‐E]ψ(x)dx = (2m/h^2)[V(a) - E]ψ(a)lim(ε→0)∫(a-εからa+εまで積分)dx = 0 』」
となっていました。この『』の部分の式変形が意味不明です。なぜx = aを代入した形で積分の前に)[V(a) - E]ψ(a)が出てきているのかがさっぱりわかりません。どなたか助けてください!お願いします。
を
A 回答 (2件)
- 最新から表示
- 回答順に表示
No.2
- 回答日時:
ANo.1の積分範囲は[a-δ,a+δ]の間違いです(失礼しました)。
で、ANo.1は式変形の意図(ココロ)を示すことが目的でしたので適当に済ませましたが、本来の目的はψ'(x)の連続性なので、これがε-δの形で表せること示す必要はあります。
具体的には、ψの2階微分の積分を実行してψ'(a+δ)-ψ'(a-δ)より、|x-a|<δに対応するε(|ψ'(x)-ψ'(a)|<ε)が存在することを『』の部分の式を適当に計算して出してやればOKでしょう。
※ε-δ論法の強みは、条件を満たすεとδの組み合わせさえあれば、ε→0を一々持ち出さなくても良くなることです。
もっとも、物理としては結果が分かればそれで良いので、あまり細部に拘泥しなくても十分ではあります。
どうもありがとうございました!とても丁寧な回答で分かりやすかったです!やはり物理では数学と違い式変形に厳密性は求めていないのですかね。本当にありがとうございました。
No.1
- 回答日時:
何だかいかにも物理屋の数式展開だなぁ、と笑ってしまいますが、
仰るとおりこれはかなりイーカゲンな式なので、イプシロン-デルタに則って説明し直すことにします。
まず、f(x)がx=aで連続であるというのは、ε-δ論法では、任意のε>0に対して、|x-a|<δ→|f(x)-f(a)|<εとなるδ>0が存在するという言葉で表されます。
よってこの条件から、f(x)の微小区間での積分については次の関係が成り立つことが示せます。
∫[x-δ,x+δ]{f(a)-ε}dx<∫[x-δ,x+δ]f(x)dx<∫[x-δ,x+δ]{f(a)+ε}dx
ここで左右の式のカッコ内は定数ですから、それぞれくくり出すことができて、
{f(a)-ε}∫[x-δ,x+δ]dx<∫[x-δ,x+δ]f(x)dx<{f(a)+ε}∫[x-δ,x+δ]dx
と書けるから、あとは定数の積分を実行して
{f(a)-ε}*2δ<∫[x-δ,x+δ]f(x)dx<{f(a)+ε}*2δ。
で、結局この積分はεで上と下から押さえられるので、ε→0で形式的に∫[x-δ,x+δ]f(x)dx=f(a)∫[x-δ,x+δ]dxと表現できる、と。
※連続な関数の積が連続になることは省略。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 物理学 ポテンシャルが有限で不連続の時、右側の波動関数をφ1(x)、左側をφ2(x)とする。境界条件の「波動 2 2023/06/04 13:53
- 数学 数学積分の問題です x=a(t+sint) y=a(1-cost) tは0〜π グラフの形は「ハ」を 3 2022/08/27 12:26
- 物理学 「次式で与えられる1次元の波動関数ψ(x,t)が自由電子のシュレディンガー方程式を満たすことを確かめ 2 2023/03/08 12:33
- 数学 微分積分の微分方程式についての問題がわからないです。 2 2022/07/18 17:44
- 数学 微分積分の極限についての問題がわからないです。 1 2023/01/08 13:57
- 数学 数学Ⅲの関数の極限、関数の連続・不連続に関しての質問でございます。 問題集には、次の関数の〔 〕内の 5 2022/05/19 10:43
- 数学 積分と不等式 2 2023/01/26 21:52
- 数学 大学数学 解析学 区間[a,b]で有界な関数f(x)が[a,b)で連続であるとき、f(x)は[a,b 2 2022/12/23 04:04
- 数学 微分可能 連続 わからない 3 2022/06/22 17:22
- 数学 微分積分の極限についての問題がわからないです。 1 2023/01/08 13:34
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・「これいらなくない?」という慣習、教えてください
- ・今から楽しみな予定はありますか?
- ・AIツールの活用方法を教えて
- ・【選手権お題その3】この画像で一言【大喜利】
- ・【お題】逆襲の桃太郎
- ・自分独自の健康法はある?
- ・最強の防寒、あったか術を教えてください!
- ・【大喜利】【投稿~1/9】 忍者がやってるYouTubeが炎上してしまった理由
- ・歳とったな〜〜と思ったことは?
- ・ちょっと先の未来クイズ第6問
- ・モテ期を経験した方いらっしゃいますか?
- ・好きな人を振り向かせるためにしたこと
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
dx/dy や∂x/∂y の読み方について
-
熱力学 (dU/dV)t の解
-
二階微分すると曲線のグラフの...
-
Stefan-Maxwell式について
-
2階の微分方程式を連立の1階の...
-
デルタ関数のポテンシャル
-
周回積分記号を用いた面積分
-
熱力学について
-
【数学】 lim x→a ↑これってど...
-
年代と年台・・・どちらが正し...
-
「無限の一つ前の数字は何?」...
-
5406を13で割ったときの絶対値...
-
2重積分の変数変換の範囲につ...
-
エクセルで(~以上,~以下)...
-
数学の問題
-
「余年」の意味について教えて...
-
高2の数学の対数関数です。 真...
-
関数(定義域・値域)についての質問
-
lim[n→∞](1-1/n)^n=1/e について
-
1/0は何故発散すると言えるので...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報