No.3ベストアンサー
- 回答日時:
右辺の(x-1)(y-1)をじっと見つめてください。
(x-1)(y-1)の( )内の数字や文字の順番をいれかえてみましょう。
(x-1)(y-1) = {(-1)+x}{(-1)+y}
定義
(x+a)(x+b)=x^2+(a+b)x+ab
は ご存じですよね。
このx,a,bを x=-1 a=x b=y に 置き換えてみましょう。
すると 先ほどの式{(-1)+x}{(-1)+y}になるんですよ。
定義を使って計算してみてください xy-x-y+1(左辺)が導けますから。
もう1つ。
左辺のxy-x-y+1を じっと見つめてみてください。
xで くくると どうなるかな?
xy-x-y+1=x(y-1)-y+1=x(y-1)-(y-1)
(y-1)でくくれそうですね?
xy-x-y+1=x(y-1)-(y-1)=x(y-1)-1(y-1)=(x-1)(y-1)
No.2
- 回答日時:
xy-x-y+1
=x(y-1)-(y-1)
このままでは分かりにくいので、
y-1=Aとして書き直すと、
=xA-A
=(x-1)A
ここでAを元に戻すと、
=(x-1)(y-1)となります。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 X³+X²Y-X²-Yを因数分解すると、(X-1)(x²+XY+Y)になるのはなぜですか?教科書に解 5 2022/04/19 23:48
- 数学 xy(2xy+2x-x-y-1)-2x+y+1 を因数分解してください 2 2022/05/21 16:12
- 数学 数学 2時間数に関わる問題について教えてください。 x≧1 y≧-1 2x+y=5 であるとき、xy 7 2022/10/29 10:57
- 数学 微分方程式の問題 2 2023/07/26 14:19
- 数学 x²+xy-4x-y+3 を因数分解して下さい。 5 2022/05/11 01:54
- 数学 【 数I 因数分解 】 問題 3x²-xy-2y²+6x-y+3を因数分解せよ。 私の解答 ※写真 2 2022/07/16 13:36
- 物理学 問題 xy面内を、加速度の大きさが一定値a0で運動する小球がある。また、この物体にかかる加速度の方向 7 2022/05/19 23:58
- 数学 X=x+y, Y=xyとする。点Q(X,Y)の存在する範囲を図示しなさい。 3 2022/06/21 21:38
- 数学 非同次線形微分方程式の解 1 2022/08/01 00:39
- 数学 点P(x,y)が平面上の領域|x|+|y|≦1を動くとする。X=x+y, Y=xyとするとき,点Q( 17 2023/07/23 10:18
このQ&Aを見た人はこんなQ&Aも見ています
-
これまでで一番「情けなかったとき」はいつですか?
これまでの人生で一番「情けない」と感じていたときはいつですか? そこからどう変化していきましたか?
-
大人になっても苦手な食べ物、ありますか?
大人になっても、我慢してもどうしても食べれないほど苦手なものってありますよね。 あなたにとっての今でもどうしても苦手なものはなんですか?
-
「これはヤバかったな」という遅刻エピソード
寝坊だったり、不測の事態だったり、いずれにしても遅刻の思い出はいつ思い出しても冷や汗をかいてしまいますよね。
-
プリン+醤油=ウニみたいな組み合わせメニューを教えて!
プリンと醤油を一緒に食べると「ウニ」の味がする! というような意外な組み合わせから、新しい味になる食べ物って色々ありますよね。 あなたがこれまでに試した「組み合わせメニュー」を教えてください。
-
好きな和訳タイトルを教えてください
洋書・洋画の素敵な和訳タイトルをたくさん知りたいです!【例】 『Wuthering Heights』→『嵐が丘』
-
xy−x−y+1これの因数分解の仕方を教えてください! 答えは(x−1)(y−1)になります
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
SQL文のwhere条件文で使う <> ...
-
1/∞=0は、なぜ?
-
Xの二乗-X+1=0 という2次方程式...
-
数学における 等価と同値って同...
-
記号(イコールの上に三角形)...
-
数学で、項を指すとき、例えば2...
-
数2 この問題で、この3つの辺...
-
VBAでセルの右下をいちばん下ま...
-
説明変数と被説明変数とは何で...
-
数学 微分と積分
-
「別々のセルの3つの日付が同じ...
-
【日本語?記号?】左辺にKを左...
-
exp(1/z)の原点のまわりでロー...
-
“∠ABC”か、それとも“∠CBA”か
-
分数の計算です。
-
等式記号に似た三本線
-
高2数学です α二乗+β二乗=α...
-
nC0+nC1+nC2+…+nC(n-1)+nCn
-
組み合わせの公式
-
√2×√3=√6 の理由を中学生に説...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
1/∞=0は、なぜ?
-
SQL文のwhere条件文で使う <> ...
-
Xの二乗-X+1=0 という2次方程式...
-
数学で、項を指すとき、例えば2...
-
記号(イコールの上に三角形)...
-
どうしてa>0, b>0のとき、a=b⇔a...
-
x/(x+1) = 1 - 1/(x+1)
-
数学における 等価と同値って同...
-
説明変数と被説明変数とは何で...
-
質問です。 a+b+c=0のとき、...
-
数学的帰納法
-
組み合わせの公式
-
高2数学です α二乗+β二乗=α...
-
1/7=1/m+1/nを満たすmとnの求め方
-
等式記号に似た三本線
-
“∠ABC”か、それとも“∠CBA”か
-
a>b,c>dのとき、不等式ac+bd>ad...
-
急ぎです゜(゜´Д`゜)゜
-
数2 この問題で、この3つの辺...
-
公務員試験 数列の問題です
おすすめ情報