利用規約の変更について

大学で物性工学を勉強している2回生の者です。

「ポーラロン」というものの存在があるらしいのですが、
どんなに文献を読んでも理解できませんでした。

ポーラロンとはなんなんでしょうか?
電荷のことですか?

どなたかお願いします。大学のレポートの締め切りが近くて困ってます!!

A 回答 (1件)

素人なのでお役に立てるか分かりませんが


このページでは簡単すぎますか?
http://www.s-graphics.co.jp/nanoelectronics/kait …
http://hiroi.issp.u-tokyo.ac.jp/Pages/Research/r …
    • good
    • 1
この回答へのお礼

ありがとうございます!!
参考になりました!!

言葉では理解できるのですが、いまいち実感がわかないんですよね・・・
フォノンの衣って何でしょうか・・・

お礼日時:2008/02/04 16:10

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qホッピング伝導とはどんなものですか?

電界をかけてその電荷が移動する「電気伝導特性」には物質ごとに色々とあると思います。金属中や半導体中の電気伝導特性は大学の固体物理等でなじみが深いのですが、ホッピング伝導とは具体的にどんなものをさすのかちょっとわからないので教えてください。

分かっているのは「連続ではない状態を電荷がホッピングしながら伝導していく」といった事くらいで、もっとちゃんと知りたいと思っています。特に

・ホッピング伝導のメカニズムは何か。
・そのメカニズムからホッピング伝導を数式化するとどうなるか。
・ホッピング伝導と言われる物質は具体的にどんなものがあるのか。
・この物質はホッピング伝導である。と言い切るには実験的にどのような電気伝導特性を示せばいいのか。

以上四点を知りたいと思っているのですが、ホームページ検索では表層しか分かりませんし、手元の書籍にはヒントは見当たりませんでした。

もしも良い書籍、およびホームページをご存知でしたら教えていただけるだけでも嬉しいのでよろしくお願いいたします。

Aベストアンサー

私が知っていることと,お知りになりたいことがどの程度マッチしているのか自信がないのですが,
私の知っている範囲(半導体関連)でアドバイスしたいと思います。
---------------
電流をになうもの(キャリア=電子and/orホール)が,キャリアの捕獲準位を伝わりながら,
流れているのをホッピング伝導といっており,これをPoole-Frenkel(PF)伝導と言ったりもします。
キャリアの励起は,電界,熱で行います。
私の関わる分野で,たぶん一番有名な材料は窒化シリコン膜です。
定式化してあったのは,確か電気学会で出している「誘電体現象論」です。
半導体物理の本(SzeのPhysics of Semiconductor Devicesなど)にも出ていると思います。
-------------
PF型の伝導か否かは,測定した電流-電圧特性をPFプロットし,そのグラフの勾配が
所定の値になっているかどうかで判別できたと思います。
今,手元に本がないので正確なことが記述できません。本を見ていただくのが一番と思います。
または,WEB検索で「プール フレンケル」,「Poole Frenkel」と入力すれば,
関連のWEBサイトが見つかると思います。

以上

私が知っていることと,お知りになりたいことがどの程度マッチしているのか自信がないのですが,
私の知っている範囲(半導体関連)でアドバイスしたいと思います。
---------------
電流をになうもの(キャリア=電子and/orホール)が,キャリアの捕獲準位を伝わりながら,
流れているのをホッピング伝導といっており,これをPoole-Frenkel(PF)伝導と言ったりもします。
キャリアの励起は,電界,熱で行います。
私の関わる分野で,たぶん一番有名な材料は窒化シリコン膜です。
定式化して...続きを読む

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Qバリアブル・レンジ・ホッピングについて教えてください。

バリアブル・レンジ・ホッピングとはいったい何なのですか。
1次元・2次元・3次元の伝導モデルをバリアブル・レンジ・ホッピングを使って説明するにはどのようにすればよいのでしょうか。

よろしくお願いします。

Aベストアンサー

電子が、低温で、熱振動によって移動する、サイト間を飛び移る(ホッピングする)ことで、それによって低温領域の電気伝導が決まるという考え方です。可変領域ホッピングといいます。
3次元では、電気伝導率がexp(-cT^(-1/4))に比例します。cは温度によらない定数です。一般に、d次元だと、電気伝導率はexp(-cT^(1/(1+d)))となります。

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

QXRDの単位について

実験でXRDを使用しておりますが、縦軸の「intensity」の意味がよくわかりません。どのような原理でintensityを出しているのでしょうか?合わせて、その単位である「count」「cps」についてもその意味を教えていただきたいと思います。どなたか回答をお願いいたします。

Aベストアンサー

intensityは回折されたX線の強度ですが、ここでは光子を計数管で数えているようなので、X線光子数と考えてよいでしょう。
一般に、スペクトルの縦軸は観測される光やイオンなどの強度や数に対応します。
UV-visのような古典的なものから、マススペクトルにいたるまで。
XRDは横軸エネルギーではないのでスペクトルというのか良く分かりませんが。
countはX線光子のカウント数、cpsは"count per second"で1秒当たり何個の光子が検出器に入ったかのことでしょう。

QXRDの2θ/θ法について教えてください。

XRDの2θ/θ法とはいったいなんなのですか。

よろしくお願いします。

Aベストアンサー

X線を試料水平方向に対してθの角度で入射させ、
試料から反射して出てくるX線のうち、
入射X線に対して2θの角度のX線を検出し、
θに対するその強度変化を調べる手法。
(入射X線源は固定して、試料をθ動かし、検出器を2θ動かす)

このとき、θを細かく変えて(例えば20°から70°)その強度変化を調べると、Bragg条件
2d sin(θ) = nλ (λはX線の波長、dは結晶の原子面間隔。nは整数)
を満たすときにX線強度が強まるので、Braggの式から面間隔がわかり、最終的には試料の結晶構造がわかります。

詳しくは専門書をご覧ください。例えば
カリティ著「X線回折要論」(アグネ)
はわかりやすい気がします。

Q半導体の縮退って?

半導体の参考書など読んでいるとよく、「縮退」という言葉が出てきます。しかも、どうやらいろいろなケースで使われているようですが、いまいちよくわかりません。

例えば、
・フェルミ準位が伝導帯中や価電子帯中に位置してるとき。
・スピンが上下二種類埋まっているとき。

に関しては分かったのですが、縮退の一般的意味と共に、他のケースについて、どういったときに縮退というのか具体的に教えていただけませんか?
よろしくお願いします。

Aベストアンサー

物理で縮退という用語は主に2つの意味で使われます.

(1) mmky さんご指摘の,
> 同じエネルギーをもつ状態が二つ以上いくつか存在すること.
例えば,クーロンポテンシャル中の荷電粒子のような中心力場では球対称性がありますから,
粒子のエネルギーは角運動量にはよりません.
p 軌道なら3重縮退,d 軌道なら5重縮退.
電子だったら,これにスピンの固有値による2重縮退が加わります.

(2) 電子気体(など)を量子統計で扱わないといけないか,
古典統計でよいかということがあります.
量子統計で扱わないといけない(低温)ときを「縮退している」といいます.
低温かどうかは考えている系のもつ特徴的なエネルギー(例えば,フェルミエネルギー)
を温度に換算したもの(フェルミ温度 T_F)との関連で決まります.
T << T_F なら縮退しています.
縮退ならフェルミ分布関数の分母にある1を無視できないし,
非縮退なら無視してよい(ボルツマン分布になる)というわけです.
sunny_day さんの
> フェルミ準位が伝導帯中や価電子帯中に位置してるとき。
は確かにそのとおりですが,これは縮退のもともとの定義ではありません.
フェルミ準位の位置の結果,そうなっているということです.
なお,フェルミ準位が禁制帯内にあっても,バンド端とのエネルギー差によっては
縮退していることもありえます.

(3) 分子遺伝学でも縮退という用語があります.
1種類のアミノ酸に対応し複数の遺伝子コドンが存在するときにこのように言うようです.
ここら辺は素人なのであまり自信がありません.

物理で縮退という用語は主に2つの意味で使われます.

(1) mmky さんご指摘の,
> 同じエネルギーをもつ状態が二つ以上いくつか存在すること.
例えば,クーロンポテンシャル中の荷電粒子のような中心力場では球対称性がありますから,
粒子のエネルギーは角運動量にはよりません.
p 軌道なら3重縮退,d 軌道なら5重縮退.
電子だったら,これにスピンの固有値による2重縮退が加わります.

(2) 電子気体(など)を量子統計で扱わないといけないか,
古典統計でよいかということがあります.
量子...続きを読む

Qブリュアンゾーンの物理的な意味

 ブリュアンゾーンは、逆格子空間のウィグナーサイツセルとして定義されますが、物理的にはどんな意味があるのでしょうか。いまいち具体的なイメージがわきません。キッテルを使って勉強しているのですが、回りくどくてよくわかりません。
 さらに、フォノンの波数ベクトルが-π<Ka<-πに限定されると、なぜそこがブリュアンゾーンに対応しているのでしょうか。
 数式はキッテルに載っているので、できるだけ物理的な意味やイメージをお教えいただければと思います。よろしくお願いします。

Aベストアンサー

○ブリユアンゾーンがなぜ波数なのか?

#1で述べた通り、そもそも逆格子空間とは、波数空間なのです。ですから、その一部であるブリユアンゾーンも当然波数ですよね。

○なぜウィグナーサイツセルがブリルアンゾーンになるのか?

例えば、いきなり三次元で考えると難しいので、二次元(x-y平面)の正方格子で考えます。基本格子ベクトルa1,a2から実際に基本逆格子ベクトルb1,b2を計算してみてください。y軸方向のベクトルと、x軸方向のベクトルになったと思います。
基本逆格子ベクトルb1とb2を線形結合をとることにより、一般の逆格子ベクトルGが得られますが、ゼロベクトルを別とすれば、逆格子ベクトルGの中で大きさが最も小さいのは、b1,b2含めて全部で4つですよね。この4つのベクトルを原点から書いてみて下さい。
で、結論から言いますと、これらのベクトルの垂直二等分線で囲まれた領域(四角形)がブリユアンゾーンとなるわけですが、それは何故かを考えます。
いま、
(1)このような四角形を逆格子ベクトルだけ移動させて張り合わせていくと、全平面を埋め尽くすことができますよね。また、
(2)四角形の内側の点から逆格子ベクトルだけ離れた点はすべて四角形の外側にあることになります。(つまり、ブロッホ波の波数kの周期的な任意性による重複がこの四角形の中にないってこと。)
ブロッホ波の波数kの任意性の周期は基本逆格子ベクトルですから・・・・もうこの四角形の内部の点だけを考慮すればいいことになりますよね!だから、こうやって定義された四角形はブリユアンゾーンとなるわけです。

この考え方が他の構造にも適用できます。

○ブリユアンゾーンがなぜ波数なのか?

#1で述べた通り、そもそも逆格子空間とは、波数空間なのです。ですから、その一部であるブリユアンゾーンも当然波数ですよね。

○なぜウィグナーサイツセルがブリルアンゾーンになるのか?

例えば、いきなり三次元で考えると難しいので、二次元(x-y平面)の正方格子で考えます。基本格子ベクトルa1,a2から実際に基本逆格子ベクトルb1,b2を計算してみてください。y軸方向のベクトルと、x軸方向のベクトルになったと思います。
基本逆格子ベクトルb1とb2を線形...続きを読む

Q共役の長大=長波長シフト?

芳香族多環化合物で、π電子共役系が伸びることによってなぜHOMO-LUMO差が縮まるのかがわかりません。
π電子共役系が伸びるとUV吸収スペクトルの吸収極大は長波長シフトすることは実験的にわかります。そして、長波長シフトはHOMO-LUMO差が縮まることによって引き起こされることも理解できますが、なぜHOMO-LUMO差が縮まるのかがわかりません。
なるべく量子化学に踏み込まずに、単純に説明できる方がいらっしゃいましたらお願いします。

Aベストアンサー

例えば、水素原子二つから水素分子ができる場合、それぞれの電子軌道を
下図のように描いたと思います;


↑      ─σ*    ←軌道の重なりで生じた反結合性軌道
|    /   \  
|1s─       ─1s ←軌道が重なる前のエネルギー準位
|    \   /
|      ─σ     ←軌道の重なりで生じた結合性軌道

|  Ha      Hb
 (Ha、Hbはそれぞれ水素原子)


π電子共役系でもこれと同様に考えると、感覚的に理解できるかもしれません。
まず、その共役系の4つの原子の、π結合にあずかる4つのp軌道について、
それぞれ2個同士で軌道の重なりを考えます;


↑        ─ πab*           ─ πcd*
|      /   \           /   \  
|     /      \        /      \  
┼ 2p─          ─2p 2p─          ─2p
|     \      /        \      /
|      \   /           \   /
|         ─ πab           ─ πcd

   Ca         Cb    Cc         Cd
 (Ca~Cdはそれぞれ炭素原子、πab・πab*はそれぞれCa・Cbのp軌道の
  重なりで生じた結合性軌道・反結合性軌道。πcd・πcd*も同様)

次に、このπab・πab*とπcd・πcd*との間の軌道の重なりを考えます。
このとき、先程のp軌道同士の場合に比べると、軌道の重なりは小さいため、
エネルギー準位の分裂幅も小さくなります(因みに、重なり0→分裂幅0);

                 _π4
E            /       \
↑  πab* ─                ─ πcd*
|           \       /
|                ̄π3

|               _π2
|           /       \
|   πab ─               ─ πcd
|           \       /
                  ̄π1
   Ca         Cb    Cc         Cd

 (元のp軌道は省略、そのエネルギー準位は左端の『┼』で表示)


この結果、Ca~Cdの炭素上にπ1~π4の4つの軌道ができます。
元のp軌道よりエネルギー準位の低いπ1・π2が結合性軌道(π2がHOMO)、
高いπ3・π4が反結合性軌道(π3がLUMO)になります。
(軌道が重なると、「重なる前より安定な軌道」と「重なる前より不安定な軌道」が
 生じますが、このように、必ずしもそれが「結合性軌道と反結合性軌道となる」
 とは限りません;その前に大きな安定化を受けていれば、多少不安定化しても
 結合性軌道のまま、と)

このように考えれば、それぞれのHOMOとLUMOのエネルギー差は、CaとCbの2つの
π電子系で生じた時に比べ、Ca~Cdの4つのπ電子系の方が小さくなることが
理解していただけるのではないかと思います。


<余談>
このようにして共役系が延長していくと、軌道の重なりによる安定化幅はさらに小さく
なっていくため、「軌道」というよりは「電子帯(バンド)」というべきものになります。
また、HOMO-LUMO間のエネルギー差も縮小し、常温で励起が起こるようになります。
これによって、芳香族ポリマーや黒鉛などは電導性が生じているわけです。

例えば、水素原子二つから水素分子ができる場合、それぞれの電子軌道を
下図のように描いたと思います;


↑      ─σ*    ←軌道の重なりで生じた反結合性軌道
|    /   \  
|1s─       ─1s ←軌道が重なる前のエネルギー準位
|    \   /
|      ─σ     ←軌道の重なりで生じた結合性軌道

|  Ha      Hb
 (Ha、Hbはそれぞれ水素原子)


π電子共役系でもこれと同様に考えると、感覚的に理解できるかもしれません。
まず、その共役系...続きを読む

Qバンドギャップと導電率の熱活性化エネルギーの関係

絶縁体のバンドギャップE_bが例えば3 eVということは禁止帯の幅が3 eVあるということですよね。絶縁体の導電率のアレニウスプロットで傾きから熱活性化エネルギーE_aを算出しますが、バンドギャップとの間には関係式みたいなものはあるのでしょうか。
例えば温度が1000Kのときは導電率sはs_0*exp((E_b - E_a)/(1000*k))ということでしょうか。s_0は絶対零度のときの導電率(?)

Aベストアンサー

No.1です。

>バンドギャップが5 eVでありながら、導電率の活性化エネルギーが1 eVというようなデータを見ることがある

そうですね、式の中の E_b - E_a を深く考えていませんでした。で教科書を見直すと、不純物がドープされている場合はドナー準位やアクセプター準位がバンドギャップの中ほどにできることを思い出しました。図で表すと下の感じです。

E

   //////[伝導バンド]/////
E_b -----------------------
   活性化エネルギーE_a
   -----(ドナー準位)------




0   -----------------------
   /////[価電子バンド]////


分かりますかねぇ…。

このような場合、E_b=5eVでE_a=1eVなどとなりますね。E_bとE_aの大きさの関係は…直接はないでしょうね。どこにドナー準位ができるかはバンドギャップE_bと無関係な気がするからです。

なお、この場合ドナー準位から電子が供給されるので導電率は
σ(T)=σ(T=0)×exp[ E_a/k_B T ]
ですね。不純物がドープされていない場合も同じでしょう(E_a=E_bだから)。

No.1です。

>バンドギャップが5 eVでありながら、導電率の活性化エネルギーが1 eVというようなデータを見ることがある

そうですね、式の中の E_b - E_a を深く考えていませんでした。で教科書を見直すと、不純物がドープされている場合はドナー準位やアクセプター準位がバンドギャップの中ほどにできることを思い出しました。図で表すと下の感じです。

E

   //////[伝導バンド]/////
E_b -----------------------
   活性化エネルギーE_a
   -----(ドナー準位)------




0   -----...続きを読む


人気Q&Aランキング

おすすめ情報