中学2年生の子供から、定義と定理ってどう違うの?
と、聞かれあちこちひっくり返して探し説明しようとしましたが、うまく説明できず、わかってもらえませんでした。
どなたか解りやすく教えてください。

このQ&Aに関連する最新のQ&A

A 回答 (11件中11~11件)

定義は、そのものズバリの説明というか、既定したものです。


3角形の定義は、3辺で囲まれた図形ということでしょうね。
つまり、我々はそれを3角形と言うのですから。

定理は、そのものについて、すでに明かにわかっているものですね。
3角形の3つの角の和は必ず180度になるとか、そういうことですね。
    • good
    • 0
この回答へのお礼

「うーん、なるほどなるほど・・・へーわかった、でもすごいねこんなに早く答えが返ってくるんだぁ」(中2息子)
「そうだよ、すごいでしょう・・・」(母)
ありがとうございました。今のところ親子の断絶はないようです。おかげさまでした。

お礼日時:2001/02/22 21:42

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q「完熟トマト」の定義とは?

野菜や果物には「完熟〇〇」という表現があります。ものによって「完熟」の定義が違うと思いますが、「完熟トマト」の世の中共通の定義というものが有るのでしょうか?
有るのでしたら内容を教えてください。
お願いします。

Aベストアンサー

農産物流通です。
通常市場に持ち込まれるトマトは薄いピンクすら入る以前のものです。
そうしなければ流通(時間や扱い)に耐えられないでしょうね。

では、「完熟」はというと完熟トマトの共通の定義がないので曖昧です。
本当に完熟、つまり収穫してすぐに食べる状態では流通させると確実に割れます。
うちでは完熟トマトとして販売している頃はカラーチャートで7~8段階で収穫してもらっていました。
見た目は全体が赤く完熟ですが赤がまだ薄いです。

現在は「完熟」という表現が曖昧なことと本当の完熟ではないことから
消費者に優良誤認を与えかねないということで、表示・表現をやめています。

自らの団体が定義をつけ、それを常に消費者に案内していれば
「完熟」という表現を使っても許されそうですね。
例えば「○○産地の完熟基準・・・カラーチャート9段階で収穫し、消費者の手元に24時間以内で届けたものを完熟という」など。

Q数学の問題集に別解ある問題ありますが、その別解と本解の解きやすさの違い見て、解きやすい方を身につけて

数学の問題集に別解ある問題ありますが、その別解と本解の解きやすさの違い見て、解きやすい方を身につけていく方が良くないですか?ちなみに、数学3の場合の話です。記述型のみです。

Aベストアンサー

要するにどちらで説いてもいいんですよ。解く道筋が自分にとってつけやすい方で解いていけばいいです。ただ両方の道筋の付け方を理解することで、違う問題に対しても応用範囲が広がる可能性はあります。

Qガラス転移の定義とは??

ガラス転移の定義を、自分の言葉でテストに書いたら
×になりました。
ガラス転移の定義ってなんですか??
ちゃんと決まっている言葉(定義)なのですか??
なんか調べてもぱっとこなくて・・・
なんとか教えてください。
よろしくお願いします。

Aベストアンサー

あなたの回答を教えて下さい。テストの回答はないのですか?
質問の回答に困ります。

以下参考まで。
ガラス転移とは,ガラスを過熱するか,またはガラスになる過冷却液体を
冷却した時その物質の融点又は液相温度の2/3~1/2の温度付近で,熱膨張
係数や比熱容量突然変化する温度,"ガラス転移温度が存在すること。
ガラスは過冷却の液体である。との言い方もできる。(ガラスの事典より)

 ガラス転移現象とは、過冷却状態からガラス状態に移るときに性質が
大きく変わる(例えば熱膨脹係数が急に小さくなる)現象をいい、ガラス
転移現象を示す温度をガラス転移温度(あるいはガラス転移点)と呼びます。

 ガラス転移とは、温度を変えたときに、アモルファス固体相が示す、比
熱や熱膨張係数のような熱力学的微分量が結晶的な値から液体的な値へと
多少急激に変化する現象である。(Wong and Angell, 1976; p.36).

 過冷却液体をさらに冷却していくと、分子運動がさらに制限されるよう
になり、最終的にはほとんど停止する。この過冷却液体が運動性を失う現
象をガラス転移と呼ぶ。つまりガラス転移は無秩序である非晶部位(過冷
却液体)でしか起きない(固体である結晶は融解するだけ)。
 

あなたの回答を教えて下さい。テストの回答はないのですか?
質問の回答に困ります。

以下参考まで。
ガラス転移とは,ガラスを過熱するか,またはガラスになる過冷却液体を
冷却した時その物質の融点又は液相温度の2/3~1/2の温度付近で,熱膨張
係数や比熱容量突然変化する温度,"ガラス転移温度が存在すること。
ガラスは過冷却の液体である。との言い方もできる。(ガラスの事典より)

 ガラス転移現象とは、過冷却状態からガラス状態に移るときに性質が
大きく変わる(例えば熱膨脹係数が急に小さく...続きを読む

Q数学の問題をどなたか解りやすく説明しながら、解いて頂けませんか?

数学の問題をどなたか解りやすく説明しながら、解いて頂けませんか?

問題)a>0とする。関数 Y=AX2乗-4AX+B(1<=X<=4)の最大値が6で、最小値が-2であるとき、定数A,Bの値を求めよ。


宜しくお願い致します。

Aベストアンサー

 二次方程式の最大、最小値の候補が頂点、および与えられた範囲の両端であることは判りますか?よく判らなかったら適当な放物線を描き、xの範囲の取り方で最大、最小値が変わることを確認して下さい。
 で、解き方ですが、元の関数を変形して
y=a(x^2-4x)+b
 =a(x-2)^2-4a+b
これより、この放物線の頂点の座標は(2、-4a+b)であることが判ります。また、x=1のときy=-3b+b、x=4の時y=bになるはずです(元の関数にx=1、あるいは4を代入します)。a>0なのだから
b>-3a+b>-4a+b
であり、与えられた範囲でのyの最大値はb、最小値は-4a+bです。実際の最大、最小値より
b=6
-4a+b=-2
これを解くとa=2となります。

Qダイアディックの絶対値の定義とはなんでしょうか?

ダイアディックの絶対値は、どのように定義されているのでしょうか?

Aベストアンサー

ダイアディックについては私も夢中になって勉強しましたが、実際に物理学の中で応用したことはありません。知識だけなので、回答すべきじゃないのですが、他に回答がつかない様なので、少しでも参考になれば、と書かせていただきます。

そもそも、ダイアディックに絶対値というものが定義されているとは知りませんでした。Gibbsは不変量として、first、second、thirdを定義しているので、絶対値の定義として相応しいものがあるのなら、この中のどれか、ということになるでしょう。

firstはマトリクスでいうところのトレースに相当します。secondはなんとも言い難いですが、thirdはマトリクスでいうところのデターミナントに相当します。よって、ダイアディックに絶対値が定義されるのであれば、不変量のthirdが相応しいかと思います。

ご参考までに。

Qブノワ・マンデルブロが導入した幾何学の概念であるフラクタルの定義を判りやすく説明してください。

フランスの数学者ブノワ・マンデルブロが導入した幾何学の概念であるフラクタルの定義を判りやすく説明してください。

この前、理学部の院生の方に「フラクタル」って何か教えてもらいました。(専門外のわたしには「へえー」と思うような、たのしい出会いでした。こういう時間ってたのしい 例として挙げてもらったのは、海岸線の計測で、巨視的に描けばほぼ直線になるが、海岸線は微視的にみると複雑に入り組んだ形状をしているが、これを拡大するとさらに細かい形状が見えてくるようになり…対して、地図上の海岸線は、拡大するにしたがって、その細部は変化が少なくなり、なめらかな形状になっていく。理論的には海岸線の計測値は無限であると言える。)。フラクタルとは「図形の部分と全体が自己相似になっているものなどをいう」

ここらへんまでは直感的に判ったのですが、「海岸線の計測地が無限なわけないでしょ」と思ってしまい、いろいろ聞いているうちに、答えるほうもわたしが判んないもんだから機嫌わるくなっていき。終了。悲劇的結末(汗)

彼は(ほんとはすごく良い人なんだけど)やけくそになって、マンデルブロはフラクタルを「ハウスドルフ次元が位相次元を厳密に上回るような集合」と定義したなんて言ったけど、わかんない。もっとわかりいやすい言葉で定義できないのですかね。(できると思うけど)

ついつい、わたしの専門外のことに興味をもってしまい。聞きこむとが多いのですが、わたに捕まって応えてくれる人たち(ちょっと年配のお兄さんたち)が基礎的な知識なないわたしに理解させようとするのは至難の業のようです(すいません)「あなたの設問そのものが成立してない」なんてしかられる。

フラクタルな性質を持っているといわれる株価や人体の血管、腸の内部構造などの例をあげて説明してくださり、上記のマンデルブログの定義をわたしにもわかる言葉で教えて下さったら、嬉しいです。

わたしの周りにいる理学部のお兄さんたちより、やさしいお兄さんたちがこの世界にたくさん居られることを信じて期待いたしてお待ちしています。どうぞ、よろしくお願いいたします。

フランスの数学者ブノワ・マンデルブロが導入した幾何学の概念であるフラクタルの定義を判りやすく説明してください。

この前、理学部の院生の方に「フラクタル」って何か教えてもらいました。(専門外のわたしには「へえー」と思うような、たのしい出会いでした。こういう時間ってたのしい 例として挙げてもらったのは、海岸線の計測で、巨視的に描けばほぼ直線になるが、海岸線は微視的にみると複雑に入り組んだ形状をしているが、これを拡大するとさらに細かい形状が見えてくるようになり…対して、地図上の...続きを読む

Aベストアンサー

ブラウン運動の例を教えていただきましたが
>D=lnN/ln(1/r)の「Dが2に近ければ近いほどこの線は線的というより
>面的になります」がわからなかったのですけど
>(1) ブラウン粒子が移動する平均距離は、時間の1/2乗に比例すると
>予測する(アインシュタインの予測。こういう予測できる能力ってす
>ごい!)
>(2) 物差しの最小単位を観測する時間間隔と考えて、時間間隔を1/2
>にすれば長さは4倍になる、したがって、フラクタル次元は2となる。
>つまり
>ブラウン運動は1次元の曲線でありながら平面を埋め尽くすフラクタル
>図形になっている。
>という理解でよいのですか?

お返事が遅くなりました。難しい質問をされますね。確かに粒子の存在確率が時間の平方根に比例して広がることと次元は結びついております。その内容はBenoit B. MandelbrotのThe Fractal Geometry of NatureのChapter 25のBrownian Motion and Brown Fractalsに書いてあってペアノ曲線というD=2の線の話から入っています。要約しようと思ったのですが大変面倒で正確にここに書くことが出来ませんでした。お時間があればこの本は日本語訳もあるようですから勉強なさってください。

ブラウン運動の例を教えていただきましたが
>D=lnN/ln(1/r)の「Dが2に近ければ近いほどこの線は線的というより
>面的になります」がわからなかったのですけど
>(1) ブラウン粒子が移動する平均距離は、時間の1/2乗に比例すると
>予測する(アインシュタインの予測。こういう予測できる能力ってす
>ごい!)
>(2) 物差しの最小単位を観測する時間間隔と考えて、時間間隔を1/2
>にすれば長さは4倍になる、したがって、フラクタル次元は2となる。
>つまり
>ブラウン運動は1次元の曲線でありながら平面を...続きを読む

Q中学2年図形の証明についての質問です。定義、定理、仮定の違いとは…

非常に初歩的な質問ですみません。
今の私の解釈では・・・

【仮定】
・問題文に出てきた事象。
・結論にはなり得ない。

【定義】
・証明をしなくてもわかりきっている(知識として丸覚えしなければならない)特徴。
・問題を解く際、答えでここへたどり着く証明をすれば、その図形であることがいえる(例:~により、AB=CB(2辺の長さが等しい)なので三角形ABCは二等辺三角形である)。つまり、結論になり得る。

【定理】
・以前証明してはっきりした特徴。
・結論になり得る?

習った内容をすっかり忘れてしまい、結論になり得るのはてっきり「定義」のみかと思って問題集の証明を解いていたのですが、どうやら模範解答を読むと定理も結論にしていいようで…

つまりは・・・
・定義と定理の違いはさほどなく、両方とも図形の特徴(性質)である。
・よって、定義のみならず定理も丸覚えせねばならない。
ということになるのでしょうか?

図形の性質については小学校でも触れているので、定義と定理にさほど違いが無ければ、とりあえず特徴を片っ端から思い出して証明を解けばいい話なのでちょっと気が楽になっていいなあと思っているのですが・・・如何でしょうか?

非常に初歩的な質問ですみません。
今の私の解釈では・・・

【仮定】
・問題文に出てきた事象。
・結論にはなり得ない。

【定義】
・証明をしなくてもわかりきっている(知識として丸覚えしなければならない)特徴。
・問題を解く際、答えでここへたどり着く証明をすれば、その図形であることがいえる(例:~により、AB=CB(2辺の長さが等しい)なので三角形ABCは二等辺三角形である)。つまり、結論になり得る。

【定理】
・以前証明してはっきりした特徴。
・結論になり得る?

習った内容をすっかり...続きを読む

Aベストアンサー

「定義」は決められた事です。
例えば直角三角形の定義は「内角の1つが直角である三角形」。
決まったことなので、理由も何もありません。

それに対し、「定理」は証明により導き出された法則です。
例えば「ピタゴラスの定理」。
これは「~なので、ピタゴラスの定理により、三角形ABCは直角三角形である」
という風に証明に使うことができます。

「定理」はもちろん丸暗記していると便利ですが、証明により導き出すことができるので、必ず丸暗記しなければならないということはありません。

Q上極限、下極限の定義を極限の定義と類似の形ですることができることを示す定理

「微分積分学I」(三村征雄 著、岩波全書、1980年度版)のP56 定理25 の証明が分かりません。

この定理25 は上極限、下極限の定義を極限の定義と類似の形ですることができることを示すものです。

定理25 lim sup a(n), n→+∞、=α∈Rであるためには、ε>0が任意に与えられたとき、

殆どすべてのnに対し、 a(n)<α+ε (8)
無限に多くのnに対し、αーε<a(n) (9)

となることが、必要十分である。 (以下省略)

注記: a(n)はa にインデックスのn がついたものです。

というところなのですが、P57の証明では次のようになっています。

lim sup a(n)=α、すなわちlim a(n)バー(aの頭に横棒)
=αとすれば、ε>0が与えられたとき、
殆どすべてのn に対し、αーε<a(n)(aの頭に横棒)<α+ε
となる。a(n)≦a(n)バー であるから、まず(8)が成り立
つ。

ここまでは分かるのですが、

つぎからはさっぱりです。(『・・・』に包んでおきます。)

『つぎに、αーε<a(n) バー=sup{a(m); m≧n}であることか
ら、αーε<a(m(n))∈{a(m); m≧n}であるようなm(n)が存在し、
これらのm(n)のなかには重複するものがあるかもしれないが、
m(n)≧nであるから、重複するものを除いても、無限に多くの
ものが残る。すなわち(9)が成り立つ。』

注記: a(m(n))はa にインデックスm がつき、そのmにさらにインデックスnがついたものです。

あれこれ考えているうちに、次のような証明を思いつきました。
<<・・・>>で包んでおきます。

<<数列a(n)を作っている数の集合をA と表す。
もし、αーε<a(n) を満たすAの要素a(n)が有限個し
かないと仮定する。そのようなa(n)のインデックスnには
最大値が存在する.それをNとすると、
αーε<a(N) 、a(N+1)≦αーε、a(N+2)≦αーε、・・・となる。
よって、A(N)={a(N), a(N+1), ...}, A(N+1)={a(N+1),
a(N+2), ...}, ・・・・・とすると、
(これは上極限、下極限を定義するときの表現と同じです)
これらのどの要素もインデックスが N+1かそれより大きいので、
A(N+1)、A(N+2)、...のどの要素もαーεより大きくなることは
ないのでsupの定義とa(n)バー が単調減少数列になることから、
・・・≦a(N+2)バー ≦a(N+1)バー ≦αーε
これはα≦a(n)バー と矛盾する。故に(9)が成り立つ。>>

以上よりお願いが二つあります。

1.『・・・』について、理解のヒントを教えてもらえるとありがたいです。
2. <<・・・>>について、私の証明を検証してもらえるとありがたいです。

勝手ながらよろしくお願いいたします。

「微分積分学I」(三村征雄 著、岩波全書、1980年度版)のP56 定理25 の証明が分かりません。

この定理25 は上極限、下極限の定義を極限の定義と類似の形ですることができることを示すものです。

定理25 lim sup a(n), n→+∞、=α∈Rであるためには、ε>0が任意に与えられたとき、

殆どすべてのnに対し、 a(n)<α+ε (8)
無限に多くのnに対し、αーε<a(n) (9)

となることが、必要十分である。 (以下省略)

注記: a(n)はa にインデックスのn が...続きを読む

Aベストアンサー

>『つぎに、αーε<a(n) バー=sup{a(m); m≧n}であることか
ら、αーε<a(m(n))∈{a(m); m≧n}であるようなm(n)が存在し、
ーーーーーーーーーーーーーーー
基本事項です。
αーεは、{a(m); m≧n}の上界ではないということです。

Q要件定義書とは?

すみません教えてください。
私は設計を全くしたことがなくて馬鹿みたいな質問かもしれませんが

設計を行う上で「要件定義書」をかかなければならないと
思うのですが、その要件定義書にはなにを記載すればいいのか
具体的に教えていただけないでしょうか?

さらに大雑把な質問ですが、案件を受注して仮に外注に仕事を
投げる場合、どこらへんまで、こちらで物を作ったらいいのでしょうか?

馬鹿みたいな質問ですがもしよろしければお教え下さい。

Aベストアンサー

「要件定義書」自体、さまざまな定義があるようですが、基本的にはクライアントから「RFP(Request For Proporsal)要求定義書」が提出されるケースもありますが、クライアント側にシステム部門がなかったり、システム知識がない場合には、要件のヒアリングをしたうえでヒアリング結果をまとめた「要件(要求)定義書」を作成します。いわゆる新システムの青写真になります。
記載項目は以下のもので網羅されていると思います。参考にしてください。
・開発案件名
・開発の目的と背景
・効果予測
・システム稼動開始予定時期
・開発案件概要
・全体実現イメージ
・導入後の見通し(データの増加予想など)
また、外注に振る場合は、要件のヒアリング作業から参画してもらい外注に要件定義書を作ってもらうこともよいと
思います。

Q余弦定理を使ってある辺の長さについての2次方程式を解くとき、そのどちらが解であるかを判定するには?

よろしければ図を描いてみて、考えていただけると幸いです。

△ABCがあり、
cos(B)=1/2, cos(C)=1/√13, AB=4
と与えられています。∠B,∠Cが一意的に決定するということは、∠Aも一意的に決定し、さらに、 AB=4なので△ABCが一意的に決定します。

ここで、BCの長さを求めたいとします。
いろいろな方法があるかもしれませんが、次のアプローチをしてみました。
cos(B)=1/2 より、sin(B)=√3/2,
cos(C)=1/√13 より、sin(C)=2√3/√13,
正弦定理より、AC/sin(B) = AB/sin(C)
これから、AC=√13

BC=xとおいて、余弦定理を使い、
cos(B) = 1/2 = (x^2+16-13)/8x
この2次方程式を解いて、x=1,3

このように2つの解が出ましたが、x=1は不適のようです。
どうしてでしょうか?

上記のやり方を元に、同値変形で、自動的にx=1が除かれるようにしたいのですが、どうすればよいのでしょうか?

Aベストアンサー

今晩は。
大分前に考えたことがありますので回答します。

△ABCにおいて、AB=c ,AC=b,BC=x とします。
このとき、
「 ∠B<∠C ⇔ b<c ・・・(#) 」 は
初等幾何でよく知られたことです。証明法の一つの「転換法」にて確か証明すると思います。

さて、
三角形ABCは構成できているので xはただ1通りに決まるはずです。
 このようなときに、xを求めるのに「余弦定理」を使うには、∠B,∠Cの角度の内、
 大きい方で余弦定理を使えば、
「正の解と負の解」が必ず1つずつ出てきますので、x=「正の解」ととればよいのです。

それを以下に説明します。

(あ) ∠B<∠C ・・・(*)であるとする。
 大きい角Cに対して「余弦定理」を用いると
 c^2=x^2+b^2-2bx(cosC) ・・・(1)
⇔ x^2-2bx(cosC)+(b^2-c^2)=0 ・・・(2)

ここで上の(#)から  b<c なので b^2-c^2<0 ・・・(3)
 よって xの方程式 (2)は「正の解と負の解」を持ちます。

◎それで 質問者のの問題に、使用すると
 AB=c=4 ,AC=b=√(13)
cosB=1/2 ,cosC=1/√(13) なので ∠B<∠C よって∠Cに余弦定理を使えば、
 4^2=x^2+{√(13)}^2-2x√(13)×(1/√13)
⇔ x^2-2x+(13-16)=0 ⇔x^2-2x-3=0
⇔ (x-3)(x+1)=0
⇔ x=3 ,x=-1 
x>0なのでx=BC=3と求まる。

(い)なお、普通「余弦定理」といっているのは詳しくは「第2余弦定理」のことで、
 
「第一余弦定理」の 「a=b(cosC)+c(cosB)」などがあります。

b=√(13)まで求めたので、これを使えば、

  x=a=√(13)×(1/√(13)+4×(1/2)=1+2=3と直ちに求まります。

◎なお、「第一余弦定理」「a=b(cosC)+c(cosB)」は頂点Aから辺BCに
垂線を引いて図を考えれば、

∠B<∠Cが鋭角だけでなく、片方が鈍角でも成立することが分かります。

あるいは、「第2余弦定理」の cosB=(c^2+a^2-b^2)/2ca 、及び
 cosC=(a^2+b^2-c^2)/2abを b(cosC)+c(cosB)に代入して、
 それがaになることを示す方法もあります。

回答になったか分かりませんが、
以上です。

今晩は。
大分前に考えたことがありますので回答します。

△ABCにおいて、AB=c ,AC=b,BC=x とします。
このとき、
「 ∠B<∠C ⇔ b<c ・・・(#) 」 は
初等幾何でよく知られたことです。証明法の一つの「転換法」にて確か証明すると思います。

さて、
三角形ABCは構成できているので xはただ1通りに決まるはずです。
 このようなときに、xを求めるのに「余弦定理」を使うには、∠B,∠Cの角度の内、
 大きい方で余弦定理を使えば、
「正の解と負の解」が必ず1つずつ出てきますので、x=...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング