

以下の8問の2変数関数の極限値を求めてる問題を解いてみたのですが
計算結果が正しいか自信がありません。
わかる方、ご指導よろしくお願いいたします。
【問題】
次の極限値は存在するか。存在する時には、その極値を求めよ。
(1) lim [(x,y)→(0,0)] (xy)/√(x^2+y^2)
まず、x→yの順に近づける。
lim[y→0]lim[x→0] (xy)/√(x^2+y^2) = 0
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (xy)/√(x^2+y^2) = 0
上記より、異なる近づけ方でも極限値が1つに定まる。
よって、lim [(x,y)→(0,0)] (xy)/√(x^2+y^2)は極限値は0をとる。
(2) lim [(x,y)→(0,0)] (x^2+2y^2)/√(x^2+y^2)
まず、x→yの順に近づける。
lim[y→0]lim[x→0] (x^2+2y^2)/√(x^2+y^2) = 0
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (x^2+2y^2)/√(x^2+y^2) = 0
上記より、異なる近づけ方でも極限値が1つに定まる。
よって、lim [(x,y)→(0,0)] (x^2+2y^2)/√(x^2+y^2)は極限値は0をとる。
(3) lim [(x,y)→(0,0)] (xy)/(x^2+2y^2)
まず、x→yの順に近づける。
lim[y→0]lim[x→0] (xy)/(x^2+2y^2) = 0
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (xy)/(x^2+2y^2) = 0
上記より、異なる近づけ方でも極限値が1つに定まる。
よって、lim [(x,y)→(0,0)] (xy)/(x^2+2y^2)は極限値は0をとる。
(4) lim [(x,y)→(0,0)] (x-y^2)/(x^2-y)
まず、x→yの順に近づける。
lim[y→0]lim[x→0] (x-y^2)/(x^2-y) = 0
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (x-y^2)/(x^2-y) = 0
上記より、異なる近づけ方でも極限値が1つに定まる。
よって、lim [(x,y)→(0,0)] (x-y^2)/(x^2-y)は極限値は0をとる。
(5) lim [(x,y)→(0,0)] (y^2)/(x^2+y^2)
まず、x→yの順に近づける。
lim[y→0]lim[x→0] (y^2)/(x^2+y^2) = 1
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (y^2)/(x^2+y^2) = 0
上記より、異なる近づけ方をすると極限値が1つに定まらない。
よって、lim [(x,y)→(0,0)] (y^2)/(x^2+y^2)は極限値を持たない。
(6) lim [(x,y)→(0,0)] (x^2-y^2)/(x^2+y^2)
まず、x→yの順に近づける。
lim[y→0]lim[x→0] (x^2-y^2)/(x^2+y^2) = -1
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (x^2-y^2)/(x^2+y^2) = 1
上記より、異なる近づけ方をすると極限値が1つに定まらない。
よって、lim [(x,y)→(0,0)] (x^2-y^2)/(x^2+y^2)は極限値を持たない。
(7) lim [(x,y)→(0,0)] (xy)/(x^2+y^2)
まず、x→yの順に近づける。
lim[y→0]lim[x→0] (xy)/(x^2+y^2) = 0
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (xy)/(x^2+y^2) = 0
上記より、異なる近づけ方でも極限値が1つに定まる。
よって、lim [(x,y)→(0,0)] (xy)/(x^2+y^2)は極限値は0をとる。
(8) lim [(x,y)→(0,0)] (x^2y)/(x^2+y^2)
まず、x→yの順に近づける。
lim[y→0]lim[x→0] (x^2y)/(x^2+y^2) = 0
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (x^2y)/(x^2+y^2) = 0
上記より、異なる近づけ方でも極限値が1つに定まる。
よって、lim [(x,y)→(0,0)] (x^2y)/(x^2+y^2)は極限値は0をとる。
もし、導き方がおかしいようなら、ご指摘いただければと思います。
以上、ご指導のほどよろしくお願いします。

No.2ベストアンサー
- 回答日時:
訂正
(1)は式に絶対値をつけとかんといかんかった。
|(xy)/√(x^2+y^2)|=|x|/√(x^2+y^2)・|y|/√(x^2+y^2)・√(x^2+y^2)
≦1・1・√(x^2+y^2) →0
(3)と(8)も。
失礼しました。

No.1
- 回答日時:
(1) △ (2)△ (3)× (4)× (5)○ (6)○ (7)× (8)△
極限の(x,y)→(0,0)は、xとyをどちらかを固定して0に近づけるという意味ではない。だから、解答のように2方向からの極限を示すだけでは不十分である。どういう近づけかたをしても、同じ値に収束するということをいわねばならない。それには、普通は距離√(x^2+y^2)を使って比較する。距離の式としては、ほかに|x|+|y|とか、max(|x|,|y|)などを使ってもよい。逆に、収束しないことを示す場合なら、2方向からの極限が一致しないことを示せば十分なので、解答の通りでよい。
(1)
(xy)/√(x^2+y^2)=x/√(x^2+y^2)・y/√(x^2+y^2)・√(x^2+y^2)
≦1・1・√(x^2+y^2) →0
という形で示す方がよい。
(2)も、
(x^2+2y^2)/√(x^2+y^2)≦x+2y≦(1+2)√(x^2+y^2)→0
(3)は収束しない。
y=0としたときの、x→0での極限は0だが、
x=yを保ったまま、x→0とすると、
(xy)/(x^2+2y^2)→1/3となって、極限が定まらない。
(4)は収束しない。計算も間違っている。
lim[x→0]lim[y→0] (x-y^2)/(x^2-y)
= lim[x→0](x/(x^2)) =lim[x→0](1/x)となって発散。
(5)と(6)はOK
(7)収束しない。
y=0としたときの、x→0での極限は0だが、
x=yを保ったまま、x→0とすると、1/2となる。
(8)収束する
(x^2y)/(x^2+y^2)=(x/√(x^2+y^2))^2・y/√(x^2+y^2)・√(x^2+y^2)
≦1^2・1・√(x^2+y^2)→0
この回答への補足
早速の解答ありがとうございました。
また、丁寧に解説していただき、ありがとうございました。
まだまだ勉強不足ですが、今後もご指導のほどよろしくお願いします。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
確定申告しなかった・無申告の人をどうやって見つけるのか元国税調査官に聞いてみた
無申告の方などを対象に税務調査を行う国税局の元税務調査官さんに、どう無申告を探すのか聞いてきました。
-
2変数関数のロピタルの定理
数学
-
e^(x^2)の積分に関して
数学
-
∬1/√(x^2+y^2)dxdy を求めよ。
数学
-
4
数学の極限の問題です。
数学
-
5
二変数関数の極限について考えるとき、y=mxと置いて考える例を習いました。その時に、y=mxと置いて
大学・短大
-
6
lim【(x,y)→(0,0)】sin(xy)/x^2 + y^2の極限値の求め方を途中式も含めて教
数学
-
7
二変数関数の極限値なのですが
数学
-
8
重積分∫∫_D √(a^2 - x^2 - y^2) dxdy (a>
数学
-
9
∫1/(x^2+1)^2 の不定積分がわかりません
数学
-
10
導体球殻の電位
物理学
-
11
2変数関数の連続性について
数学
-
12
極限の問題
数学
-
13
広義2重積分なんですけど、 I=∬1/(x^2+y^2)^2dxdy D:x^2+y^2≧1 極座標
大学・短大
-
14
e^(-x^2)の積分
数学
-
15
固有値の値について
数学
-
16
e^-2xの積分
数学
-
17
積分で1/x^2 はどうなるのでしょうか?
数学
-
18
大学の重積分の問題です。
数学
-
19
二変数関数の極限値計算の途中で・・・
数学
-
20
分母が文字の分数を微分する方法を教えてください。
数学
おすすめ情報
このQ&Aを見た人がよく見るQ&A
人気Q&Aランキング
-
4
lim[n→∞](1-1/n)^n=1/e について
-
5
微分可能かどうか
-
6
logx/xの極限でロピタルはダメ??
-
7
極限の質問です。 lim x•e^(1/x...
-
8
「極限を調べろ」の問題は常に...
-
9
広義積分問題
-
10
ある関数が微分可能かどうかを...
-
11
この極限を求める問題で対数を...
-
12
数3極限についてです。 lim(x→∞...
-
13
高3女子です lim(x→1+0) x/x-1...
-
14
lim[x->1] (x+1)/(x-1)^2
-
15
極限 証明
-
16
2変数関数のロピタルの定理
-
17
関数の極限の問題です。
-
18
関数f(x)がx=aで微分可能のとき...
-
19
「微分可能性を調べよ」という...
-
20
ロピタルの定理を使った留数の...
おすすめ情報
公式facebook
公式twitter