A 回答 (10件)
- 最新から表示
- 回答順に表示
No.10
- 回答日時:
訂正 :
No.9 は、たぶん早々に削除されることでしょう。
業界の慣習に沿って無難に処理するということは、
実務上必要でもあるし、考える労力の節約にもなります。
しかし、今回貴方がしたように「それは何故か」と
問うてみることは、物事を一段深いレベルで理解する
ための入口になるのです。
慣習だけで済まさないほうがよい。せっかく関心を持ったのだから。
私の回答は、統計上の一側面について書いてみました。
他にもイロイロの観点があろうかと思います。
自分の考え方が、見つかるとよいですね。
No.8
- 回答日時:
#1です。
私の研究分野では学会の過去の研究論文や世界の先輩研究者の間で行われてきた標準的な実験データをとる為の試行回数が同じ実験条件に付き16回行ってその平均をとることが行われていましたので、それにしたがって膨大な試行回数の実験をおこなって、研究データを準備しました。
試行データ取得の繰り返し数は多ければ多いほど実験誤差の影響を取り除くことができます。実験には誰が行っても同じデータが得られるという再現性が求められます。そうでないと科学や研究とは言えません。
実験のやり方やデータの取り方や試行回数などは、その分野で認められた過去の実験データやデータ取得の試行数が過去の研究者の研究方法を元にほぼ決まっていることから、それに従えば、その分野の研究データとして学会や会社でも通用するデータになるかと思います。過去の実験方法や試行回数以上の実験を行ってデータを出すのであれば問題がないですが、業界や学会で確立している(常識となっている)実験条件や試行データ取得の繰り返し回数以下の実験データでは一般には通用しないと思います。単なるサボタージュ実験データとしか見做されないかと思います。
あなたのやっている実験についてはその分野で採用されている実験データの取り方(3回やって平均を取るなど)にしたがって、繰り返し回数を決めるといいでしょう。
先生も、そう言った実験データのとり方があなたの意図(できるだけ繰り返し回数を減らしたい)に対して、5回の平均を取るのがその分野の常識?となっていて、それを無視して繰り返し回数を減らす実験には、不安を感じておられるのかも知れません。
繰り返し回数は、統計的には回数が多い方が良いに決まっていますが、最低何回なら良いかという回数は、その分野で確立している(多くの研究者が認めている)過去の多くの人によって行われてきた実験データの取り方や回数を参考にすべきでしょうね。
そういった慣習を破るには、学会で多くの研究者や論文や業界に対して、それを覆すだけの理論的な根拠を示し、膨大な実験データを提示して実証し納得させないといけませんね。
その分野で最初に実験をしそのデータを研究論文等に投稿して受け入れられた場合、それが基になります。後続する同様な実験で多くの研究者が再現実験をしその実験方法や繰り返し回数で、不十分という実証データを提示して実験方法の変更などの提案がなされ多くの研究者に受入られれば、変更が加えられますが、そうで無い限り過去の実験方法が踏襲されます。
ですから、あなたの実験分野で行われている実験回数か、それ以上の回数の繰り返し実験を行うのが無難でしょう。先生も3回では不安に思っておられるのは、多分その分野では少なすぎで5回はやって平均をとるといったことにこだわって見えるのだと思います。
実験の難易度、費用、その他の条件がありますので、測定実験の繰り返し回数は、分野によって異なるのは当然ですね。回数は少ないよりは多い方がいいですね。でもその根拠は、過去のその分野の実験方法で多くの研究者で認められた妥当な回数によって決まるのでしょうね。
No.7
- 回答日時:
データを捨てることの可否は、何を調べるために何をどう測るか、ということに依るんじゃないですかね。
たとえば、ある物理実験を一度やると沢山のデータが出るけれども、それらのうちの最大値こそが測定結果だとします。この実験では、データ全体の分布は非常によく再現するんで、実験自体は安定している。けれどもまれに飛び抜けた最大値が現れることがあり、これは本来調べようとしている現象以外の外乱によるものと思われる(例えば背景放射線がたまたま飛び込んだとか)。で、この実験を様々な条件で行って、条件と測定結果との関係を調べることが目的である。…と、そういう状況では、どの条件でも丁度5回実験をやって、測定結果の最大と最小を捨てて残りを平均する、(あるいは中央値を採用する)というプロトコルを(恣意的でなく)常に行うと決めておくのは妥当かと思います。そうしないと、外乱の影響を強く受けて本来調べたい現象が見えなくなってしまうから。…と、これは余談でした。
さて、ご質問の場合はANo.2のコメントに「空試験」とありますから、試験の対象は測定手段自体ですね。今後本番の測定を沢山行っていく予定であるが、その前に、測定手段がきちんと機能しているかどうか検証したい、という状況にあると思われます。
空試験における測定結果のばらつきは、この測定系の持つ不安定さの反映だと考えられるでしょう。この系で異常値がどのぐらい現れやすいかを知っていないと、本番の測定で何回繰り返し測定をやれば良さそうなのか、目処も立たない。いや、本番でも同じ対象を繰り返し測ることが出来るのなら、何度も本番を経験する中でばらつきの傾向を見ながら繰り返し回数を減らしていこう、というアプローチもある。けれど、もし、測定に凄くコストが掛かったり、あるいは測定したらサンプルが破壊されて同じサンプルはもうない、という状況だったなら、そうはいかない。空試験をするなり、きちんと準備された標準サンプルを使うなり、要するに本来ならいつも同じ結果が出ると期待される測定を繰り返し行って、測定手段自体の試験をやっておくしかない。
さてそういう状況において、「測定手段が原因となって異常値が確率pでランダムに発生する」という仮定を置くと、たとえば空試験を繰り返しても一度も異常値が出なかったなら、二項分布を使って(ある有意水準において)「pはある値以下だ」と推定できる。繰り返しを増やすほどpの上限値が小さくおさえられる。どのぐらいの上限値が欲しいかによって、繰り返し回数は決まる。なので、欲しい上限値がさほど小さくないのであれば、(ある有意水準において)
> 5回測定にメリットが無いことは統計学的に証明出来る
かも知れません。
No.6
- 回答日時:
ロバストネスの基本事項を、少し補足しておきます。
3項目の中央値に情報量が少ないのは、
3項目の平均に情報量が少ないのと同じことです。
毎日3回づつ測定して10~30の値が続いていたデータに、
ある日50が出現すれば、誰もが「何か変だ」と思います。
だからといって、この50を恣意的に取り除いたら、
データを改竄したことになります。
代表値として平均値を採用していれば、
データは、この50の影響を受けます。
それは、よく言えば、データの変化に鋭敏だということ。
悪く言えば、誤差の混入に脆弱だということ。
その二つは、同じことの両面です。
中央値を採用していれば、
代表値は、50の影響を受けません。
中央値は、平均よりも、鈍感かつ頑堅です。たった3項目の場合にも。
No.5
- 回答日時:
3という数に統計学上の意味はありません。
あらかじめ得られた情報と、精度上の必要性から来るものです。先日、2人の医師に「眼圧」を測ってもらったところ、どちらも3回測って平均値をとっていました。それが医学上の常識とマッチするようです。
また、情報という観点からすると、
1回なら平均値
2回なら平均値・分散
3回なら平均値・分散・歪度
4回なら平均値・分散・歪度・尖度が計算できます(それぞれ1次・2次・3次・4次のモーメント)。
また、実験計画法によれば、8回の実験で、1個の平均と7個の要因の影響が得られます。
これらは、n個の方程式でn個の未知数が得られる、という理論と同じです。
もちろん精度の話は別です。精度を上げるには、多くの回数が必要です。
No.4
- 回答日時:
>5回測定にメリットが無いことは統計学的に証明出来るのでしょうか?
統計学的に証明できるのであれば、統計学の教科書に「測定は、5回すること」と明記しているハズなので、質問をなさる余地はありません。
以下、教科書は書かれていないことを述べます。
統計学的に正しいことと、実利的に適切であることは、一致しない場合が少なくありません。というのも、統計学の基本は、両群に有意差あり、の結論を主張することしかできないことです。例えば、ガン患者の生存期間について、薬Aだと10±1、薬Bで11±2、という結果になったとします。これは、患者数(サンプル数)が少ないときは有意差無し、であっても、患者数を増やせば(理論的には無限に)有意差を認めることができます。
有意差の判定には、単位は無関係です。現実的には、10年と11年と平均値に1年も差があれば、薬Bを選ぶでしょう。しかし、単位が秒なら、どうでしょうか。その1秒差のために、薬Bの値段が倍だったら。
3回と5回の選択は、統計学ではなく、実利からの判断なのです。
上司に「なぜ5回」と訊かれて、私以上の回答なら、尊敬して下さい。教科書にも書けないことをキチンと説明できるわけですから。
3回だと、中央値を使えるというご意見は、賛成できません。3つの中央値、なんぞは信頼性が薄からです。なにより情報量が少ない。たとえば、10、20、30の場合、中央値は、20それだけです。ある日のデータが50になっても、そのデータについて、「おかしい」という判断はできません。平均±不偏標準偏差(σ)なら、20±10になり、51というデータがでれば、『3σより離れているので、何かおかしい」という結論を、統計学的に主張できます。
平均値と中央値の使い分けも、教科書では不十分です。この相違は、統計学の基本中の基本なので、現場に合わせて使い分けができれば、統計学の初心者をようやく卒業でしょう。
と偉そうに書きましたが、私も初心者で、流行の多重比較なんぞは分りません。
No.3
- 回答日時:
> 5回測定にメリットが無いことは統計学的に証明出来るのでしょうか?
5回測定にメリットは、あります。
各測定の誤差間に相関がなければ (誤差に一定の傾向が無ければ、ということ)、
測定回数が増えれば増えるほど、測定値の分散(バラツキ)は小さくなる。
中心極限定理(大数の法則)というヤツです。
その意味では、測定は2回でもかまわないし、3,4,5,… と回数が増えれば
なお良い。費用対効果は、また別の話ですが。
3回という測定回数が特別なのは、中央値をとることができるデータ数の最小値
だからではないでしょうか。中央値、最頻値などの統計量は、「ロバスト」と
いわれ、大きな誤差を含むデータの混入に対して、平均値などより遥かに強い。
家庭用血圧計の使用説明書には、たいてい「3回測って中央値をとれ」と書いて
ありますね。
最後に平均値をとってしまうなら、3回という回数にこだわる意味は無いでしょう。
No.2
- 回答日時:
3回測定すれば、標準偏差が計算できます。
測定値は、正規分布をしていると想定できるので、測定値の範囲を推定できます。平均±標準偏差に68%のデータは入るからです。2回だと、標準偏差は、2つの測定値の半分、と自動的に決まってしまうので、ほとんど意味がありません。
「繰り返して測定して平均値を出すのは何故」と学生に訊くと、「正確に測定するため」なんぞの安易な返事をしてくれます。それに対して「それなら、3回と言わず、5回、10回、100回と、無限に測定したら」と反論すると、まず答えられません。「何回もする暇はない」なんぞが学生から返ってきますが、「1回で済むところを、3回も測定するのは、暇そのものろう」と思います。
救いようがないのは、検量線を3本引いて、その平均値を使え、なんぞ。検量線の方法を何も理解していない、からです。逆に1点検量なんぞの雑な記述も見ますが。
一般的なサンプル(サンプルにばらつきが無い、あるいは微小)測定では、繰り返しは不要です。標準偏差は、単に測定者の腕の悪さを露呈しているすぎないからです。また、測定者の腕以外に、機器や器具の誤差もあり、これは防げません。もちろん、暇と金が余っているのなら、無限に測定するほど、真の値に近づきますが。
逆に、動物実験のように、試料そのものに必ずバラつき(個体差)があるものは、最小でも3例必要です。
また、測定法が技術的に困難で、バラつきが大きいもの(私は、5%を目安にしています)については、動物実験と同様、何度か測定を繰り返しています。
私もたまに間違った回答をしてしまうことがあり、他の書き込みを批判したことはないと思うのですが、他の方の回答は、研究者として疑問を感じます、程度ではありません。どこの研究室か教えてほしいくらいです(本音は、こんな出鱈目な話は聞きたくもありませんが)。悪ふざけか、冗談でしょうか。それとも落とし穴。
5回測定して、上下のデータを削り、残りの3つの平均、というのは間違いです。自分の都合の悪いデータを削除しているので、データの改竄そのもので、絶対に許されません。許されるとご判断されるのなら、学会で堂々とありのまま話して下さい。
平均値ではありませんが、10匹マウスに化合物を投与して9匹には効いた。1匹死んだが、これは外れたデータなので削除、「この薬は、よく効く」なんぞが許されますか。
許されるのは、試薬を入れ忘れたなどが確実で、サンプルが残っておらず、再測定ができない場合など、のみです。それでも、削除した理由を明示する必要があります。
強いてあげると、5点で検量線を引き、『どうも1点外れている』の場合、その1点を外して検量線を引き直すのは、許されています。
スケートなどの採点で上下を外すのは、恣意的な採点がありえるので、そのルールが明示されているからです。科学の世界では、測定値が恣意的に出されるわけではなく(と信じたいが)、改竄は許されていません。
この回答への補足
<それなら、3回と言わず、5回、10回、100回と、無限に測定したら?
私の知りたいのはズバリこれです!!私の上司は、空試験を5回しろと言います。3回では不安なのだそうです。この上司に5回測定の意味のなさを伝えたいのですが、5回測定にメリットが無いことは統計学的に証明出来るのでしょうか?
愚問でしたらすみません。
No.1
- 回答日時:
2回の実験で異なる結果が出た場合、どちらがより正しい結果か分からないですね。
もう一回実験すれば、それによって、間違ったデータ(誤差の大きいデータ)の目安やデータのばらつきなどの判断に使えます。余程おかしなデータでなければ、3個の実験値のデータの平均で、誤差の影響を減らせるかと思います。最低3回の測定は最低限ですね。
3回より5回、7回と行って、上下の一番外れたデータを除いて、残りの平均を取ることも行われます。
真値が分からない以上、測定誤差の影響をできるだけ少なくする為に平均を取るわけです。
最低3回だけでも、大きな測定誤差が入った場合の測定値を除外できます。
さっそくの解答、ありがとうございます!
私も、info22さんのように思っていました。この質問をした敬意は、上記(ひとつ上の回答の補足)のとおりです★
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 統計学 生物統計学の質問 3 2022/11/11 21:14
- 物理学 不確かさの伝播式というものを使って、物理学実験で測ったデータの不確かさ(今回は3181.85)を出し 1 2022/10/15 11:22
- 中途・キャリア さて、社会人になってから13年目。 今まで、機械設計、機械製品の品質管理、部門の経営企画をやってきま 4 2023/07/17 08:59
- 中学校 理科だけが極端に苦手 5 2022/09/10 14:18
- 教育・学術・研究 実験の測定結果について。 実験で、345.8と343.3という値が出てきたとして、その平均をとるとき 1 2022/10/17 20:33
- 数学 無理数の数字の組み合わせ。無限の意味について 5 2022/05/28 22:53
- 数学 数学の問題です。 問1: ある(人数の非常に多い)集団から無作為に6名を選んで身長を測ったところ、そ 2 2022/12/09 12:03
- 統計学 化学 物理 電気 とある実験で求めた抵抗値の測定から求めた標準偏差(124)を利用して計算された平均 3 2023/06/25 20:34
- 化学 密度についてです。密度=ρ 高校の実験でよくわからない部分があったため、教えて欲しいです。 比重びん 1 2023/06/17 18:59
- その他(プログラミング・Web制作) 三菱製PLC Qシリーズで技術的なことをご教示いただければ幸いです。使ってるソフトはGXWorks2 1 2023/02/28 12:07
このQ&Aを見た人はこんなQ&Aも見ています
-
あなたの「必」の書き順を教えてください
ふだん、どういう書き順で「必」を書いていますか? みなさんの色んな書き順を知りたいです。 画像のA~Eを使って教えてください。
-
【大喜利】【投稿~1/9】 忍者がやってるYouTubeが炎上してしまった理由
【お題】・忍者がやってるYouTubeが炎上してしまった理由
-
最強の防寒、あったか術を教えてください!
とっても寒がりなのですが、冬に皆さんがされている最強の防寒、あったか術が知りたいです!
-
【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
「出身中学と出身高校が混ざったような校舎にいる夢を見る」「まぶたがピクピクしてるので鏡で確認しようとしたらピクピクが止まってしまう」など、 これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
-
【大喜利】【投稿~1/20】 追い込まれた犯人が咄嗟に言った一言とは?
【お題】追い込まれた犯人が咄嗟に言った一言とは?
-
実験値として平均値を採用する行為
物理学
-
標準偏差
数学
-
実験における誤差範囲の許容範囲の決め方ってどうやればいいんですか? また、一般的には具体的にどこ程度
大学・短大
-
-
4
triplicateについて
化学
-
5
n数?N数とはどのような意味ですか?
その他(ビジネス・キャリア)
-
6
吸光度の単位
化学
-
7
2重あるいは3重データの統計処理について教えてください。
その他(教育・科学・学問)
-
8
平均値、標準偏差の有効数字について教えてください。
統計学
-
9
相対誤差が小さいと判断する基準がわからないのでどのような値になったら小さいと判断してよいのか教えてほ
大学・短大
-
10
工業製品の抜き取り検査のN数の決め方
数学
-
11
空試験
化学
-
12
アニリンの反応について
その他(自然科学)
-
13
統計学でいうRSD%とは何ですか。
数学
-
14
統計学的に信頼できるサンプル数って?
数学
-
15
会社の敬称は御社。では部署の敬称は?
転職
-
16
質量パーセントと重量パーセント
化学
-
17
ヤング率測定実験における尺度変化の平均値の算出法について
物理学
-
18
エクセルの散布図のX軸に文字を表示したいのですが、どうしたらよいのでしょうか?
Excel(エクセル)
-
19
試行回数を増やせば誤差は減りますか?
その他(自然科学)
-
20
速度は、大きい小さい?高い低い?早い遅い?
日本語
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~1/20】 追い込まれた犯人が咄嗟に言った一言とは?
- ・洋服何着持ってますか?
- ・みんなの【マイ・ベスト積読2024】を教えてください。
- ・「これいらなくない?」という慣習、教えてください
- ・今から楽しみな予定はありますか?
- ・AIツールの活用方法を教えて
- ・【選手権お題その3】この画像で一言【大喜利】
- ・【お題】逆襲の桃太郎
- ・自分独自の健康法はある?
- ・最強の防寒、あったか術を教えてください!
- ・【大喜利】【投稿~1/9】 忍者がやってるYouTubeが炎上してしまった理由
- ・歳とったな〜〜と思ったことは?
- ・ちょっと先の未来クイズ第6問
- ・モテ期を経験した方いらっしゃいますか?
- ・好きな人を振り向かせるためにしたこと
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報