bulk diffusion
external diffusion
internal or pore diffusion
それぞれどういう意味ですか?詳しく教えてください。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

水溶液の中に活性炭の微粒子がたくさん入っている状態を想像して下さい。


その中をCuイオンが動き回っています。どんな風に動き得るでしょうか?

微粒子の間の水中に浮かんで動き回る … 外部拡散
微粒子の表面に張り付いて動く … 表面拡散
微粒子の表面にあいた穴の中で動く … 細孔内拡散
微粒子にめり込んでその中で動く … バルク拡散

大まかに言ってこんなところです。文脈や研究者によって違いますが
表面拡散と細孔内拡散をあわせて internal diffusionと呼ぶようです。
    • good
    • 0
この回答へのお礼

分かりやすい回答ありがとうございました。

お礼日時:2009/06/01 16:47

バルクとは「固体の内部」の事で、「固体の表面」の対義語です。


固体の中でも、表面から受ける影響が無視できるような深さの部分を
こう呼びます。固体物理学の用語です。

bulk diffusion = バルク拡散(固体内部での拡散)
external diffusion = 外部拡散
internal diffusion = 内部拡散
pore diffusion = 細孔内拡散

多孔質での吸着か何かの話ですか?

この回答への補足

回答ありがとうございます。

はい水溶液中での銅イオンの活性炭を用いた吸着です。

まだわからないですが、拡散ってどういうことですか?

補足日時:2009/05/28 00:28
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q粒界拡散とは

粒界拡散とはどんなことでしょうか。できたら具体的な例で教えてください。おねがいします。

Aベストアンサー

拡散現象は酔歩問題(ランダムウォーク)を併せて議論されたりしますが、酔っ払いが一体どこにたどり着くかという問題に興味を持って、随分以前ですが少しだけ調べたことがあります(←大袈裟、ほんのさわりだけ)。
拡散の熱力学はmomotarosamuraiさんが書かれていますので異なる観点から少し述べてみます。
固体内の拡散機構として4つの機構が提案されています。
1)格子間機構:結晶格子間をランダム歩行しながら原子が移動。
2)空孔機構:熱励起や不純物の添加で生じた結晶中の空孔が隣接する原子と位置を交換しながらランダム歩行していく。
3)準格子間拡散機構:1)と2)を併せたようなもので、格子と格子の間に原子が移動して格子間原子となり、これが次々とランダム歩行していく。
4)リング機構:空孔のような格子欠陥の存在を必要とせず、隣接する原子同士がリングを作り、リングを作った原子が互いに同時に位置を交換し合い、この交換を順次繰り返して拡散していく。

拡散の種類として
1)固体内部の拡散を体積拡散
2)固体表面の原子が表面に沿って拡散するのを表面拡散
●3)粒界拡散:結晶粒界に沿って原子が拡散
→結晶粒界(結晶粒間に生じる界面)やその近傍では原子の配列が乱れていますので、その乱れのお陰で原子は拡散しやすいということになります。
4)転位拡散:結晶中の欠陥である転位(原子配列あるいは結晶格子の乱れが1つの線に沿って生じている欠陥)に沿って原子が拡散
尚、粒界拡散の具体例は「セラミックス」で検索されればそこそこでてくると思います。
下記URLはアルミニューム合金の拡散に関するレポートで拡散の概論を知る上で参考になると思います。

参考URL:http://inaba.nims.go.jp/diff/DIF_Hirano/DIF3/hirano3.html

拡散現象は酔歩問題(ランダムウォーク)を併せて議論されたりしますが、酔っ払いが一体どこにたどり着くかという問題に興味を持って、随分以前ですが少しだけ調べたことがあります(←大袈裟、ほんのさわりだけ)。
拡散の熱力学はmomotarosamuraiさんが書かれていますので異なる観点から少し述べてみます。
固体内の拡散機構として4つの機構が提案されています。
1)格子間機構:結晶格子間をランダム歩行しながら原子が移動。
2)空孔機構:熱励起や不純物の添加で生じた結晶中の空孔が隣接する原子と位置を交換...続きを読む

Q六方晶における格子面を(0001)と4桁で

3次元結晶の場合、格子の面や格子ベクトルは
3つの数字の組(001)などで確か全て表せます。

六方晶でも3つの数字の組で表せるのですが、4つの数字の組で表した方が理解しやすいので、この記法が使われることがあります。

4つの数字と3つの数字の関係はどうなりますか?
4つの数字には別の拘束条件がありそうですが、
いかがでしょうか?

このことについて書いてあるwebとか本をご存知ないですか? ちょっと探したけれど見つからなかったので。

よろしくお願いいたします。

Aベストアンサー

六方結晶の場合は(0001)というような表し方ですね。いわゆるc軸が4桁目になります。(h,k,l,m)の場合、h + k = -l の関係があります。

参考URLに出典例を書きましたが、"ミラー指数" "0001"で検索すると、関連ページが56件ありました。

参考URL:http://www.f-denshi.com/000okite/300crstl/304cry.html

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

Q面心立方と体心立方の逆格子

固体物理の勉強をしています。
体心立方構造の(hkl)面の逆格子点 g*=ha* + kb* + lc*を逆空間で描くと面心立方構造になるらしいのですが、理由がわかりません。
分かる方いましたら、教えてください。お願いします。

Aベストアンサー

単純な計算だけで分かります。
体心立方格子のユニットベクトルは
a1=(-a/2,a/2,a/2), a2=(a/2,-a/2,a/2), a3=(a/2,a/2,-a/2)
です。aは格子定数です。
逆格子ベクトルは b1=2π(a2x a3)/(a1(a2xa3)) などですから、単純に計算すれば
b1=2π/a(0,1,1) , b2=2π/a(1,0,1), b3=2π/a(1,1,0)
となり、これは面心立方格子のユニットベクトルです。

Qバルク状って・・・・?

ものすごく基本的な質問かもしれませんが、教えてください!
よく物質の状態として「薄膜状態」に対して「バルク状」って用いられますが、実際バルク状とはどのような状態のことを言うのでしょうか?アモルファス状態とはまた違うのでしょうか?
さらに、何かこれらのことで参考になる書籍などがありましたら、教えてください!
よろしくお願いします!

Aベストアンサー

「バルク」は「薄膜」の対義語です。
要は、薄膜ではない、分厚い塊をバルクと言います。

「バルク」という言葉は、結晶状態すなわち、アモルファスとか、単結晶とか、多結晶とか、それらについては何にも言っていません。
(ですから、アモルファスのバルクもあれば、単結晶のバルクもあれば、多結晶のバルクもあります。)


なお、薄膜とバルクの境目がどこかということについては、「量子効果が現れるか否か」ということでは必ずしもありません。
特に定義もされていません。
例えば、厚さ1μm程度以上のものも薄膜と称しますので。

Qエクセルで片対数グラフを作る

エクセルで片対数グラフを作る方法を詳しく教えてください。お願いします。

Aベストアンサー

グラフの数値軸のところで右クリックして
軸の書式設定(O)→目盛(タブ名)

対数目盛を表示する(L)
にチェックを入れてください。

QExcelで微分をしたいのですが。。。

題意のままですが・・・(´;ω;`)ウッ…
Excelを使って微分の計算をすることは可能でしょうか・・・?
またExcelで使えるツールなどでももちろんOKです。
ご存知の方が見えましたらお助けお願いします。。。

Aベストアンサー

>エクセルを使って微分の計算をする
とはどういうことでしょうか。
たとえば、(1)y=Xの2乗の導関数のy=2Xを求めるということでしょうか。これは「数式処理」に該当し、エクセルは値を扱う(四則演算が中心)ものなので、お門違いの要求です。他のソフト(ただし原理的にどんな数式・関数に対しても求まるソフトはないようですが)を探しましょう。ただアドインという形だとプログラムを組んで何でもエクセルにぶち込めるようなので、そういう例があったとしたら、話は別です。
積分の原始関数を求めるというのも似たパターンでしょう。
そうではなくて
(2)上記の例で、導関数を、人間が!
(A)エクセルの関数式で与えてやり、
(B)またはその導関数の近似値を与える関数式を与えて
やるなら、
後はエクセルは「電卓の計算を繰り返し高速計算するような」ものですから可能と思います。
ただ1000個の数の足し算をするという風には簡単にいかないケースがあるとは思いますので、勉強がひつようでしょう。収束や近似や速度に合う条件・計算法が必要でしょうから。
y=Xの2乗の(1、1)点の接線の勾配を出すなら
2X1=2で簡単です。
微分でなくて、定積分なら数値計算法を質問する意味はあると思いますが。
エクセルは四則演算といっても初等的三角関数、対数
、行列計算、ガンマ関数などもあります。
上記は原則論ですが、エクセルは全世界の俊秀も使っているとおもわれ、いろいろな機能を付加されているかも知れないので、最低WEB照会程度はして、よく調べてください。またエクセルを入り口や出口の入力・結果表示の道具として使っているケースは多いようですから、そういうケースは「エクセルでできる」に該当しないと思います。

>エクセルを使って微分の計算をする
とはどういうことでしょうか。
たとえば、(1)y=Xの2乗の導関数のy=2Xを求めるということでしょうか。これは「数式処理」に該当し、エクセルは値を扱う(四則演算が中心)ものなので、お門違いの要求です。他のソフト(ただし原理的にどんな数式・関数に対しても求まるソフトはないようですが)を探しましょう。ただアドインという形だとプログラムを組んで何でもエクセルにぶち込めるようなので、そういう例があったとしたら、話は別です。
積分の原始関数を求...続きを読む

Q部分モル体積

水100cm^3とメタノール100cm^3を混合してできる溶液は200cm^3ではなく190cm^3になる。このような2成分の混合溶液を考えるときは部分モル体積を考えるとよい。と、書いてあったのですが
1.部分モル体積にの持つ意味ってなんでっすか?
2.単位はcm^3/molだったと思うので1モルあたりの体積でいいのでしょうか?
3.例えば水の部分モル体積が16.56だった場合は1モルで16.56cm^3の体積になるってことですか?
4.理想溶液とは何ですか?

Aベストアンサー

1.部分モル体積
混合物の全体積をV,着目する成分の物質量をmとしたときの∂V/∂m.
式からわかるように,系が十分大きいとすればそこに着目成分を1mol追加したときの体積増加.あるいは,系に着目成分を微小量添加したときの体積増加を添加量1molあたりに換算したもの.

2.,3.
上の定義に戻ること.

> 4.理想溶液とは何ですか?
Raoult の法則が組成全域について成り立つものだけど,要するに溶質溶媒間に相互作用がないような系ということ.理想気体とは分子間相互作用がないことが前提にあるのと同様.

Qこの場合のギブスエネルギーの変化量を教えてください

大学二年生の化学熱力学の教科を学んでいるのですが。。。
全くわからない問題があります!
室温298K、0.022molの理想気体が圧力が17.0MPaから100KPaに変化した。
この過程でのギブスエネルギーの変化量はいくらか。
という問題です。
物質量はどこで使うのですか?
計算過程もお願いします。
また、こういう問題は何を考えれば解けるのかアドバイスお願いします。

Aベストアンサー

ギブス自由エネルギー(G)の定義は
G = H - TS
H: エンタルピー (J)
S: エントロピー (J/K)
T: 環境温度 (K)

ギブス自由エネルギー変化量(ΔG)は
ΔG = ΔH - TΔS

エンタルピー,エントロピーは対象とする系の
1)温度
2)圧力
3)物質の相の数
4)各相での各成分量
が決まると計算できます。

言いかえると、上記1)2)3)4)のどれかが変化するとエンタルピー,エントロピー、そしてギブス自由エネルギーも変化します。

問題を上記1)2)3)4)に照らし合わせると、
1)温度は変化したと記述していないので一定
2)圧力は17MPaから100KPaに変化
3)相(気相、液相、固相)の数は理想気体が凝縮して液体になった、と記述していないので一定
4)各相での各成分量、この場合、気相の理想気体の種類が増えた減った、0.022molが増えた減ったと記述していないので一定

3)4)はちょっと強引なところありますが、幅広く題意を捉えるための説明です。

まずエンタルピー変化ΔHを計算します。
結論から言うとΔH = 0です。
理想気体1mol当たりのエンタルピーは温度変化した場合にのみ変化し、圧力により変化しません。
これは理想気体の状態式(PV=RT)とエンタルピー計算式(微分形で与えられます)から導出されます。
圧力は変化していますが温度が変化していないのでΔH = 0。

次にエントロピー変化ΔSを計算します。
理想気体1mol当たりのエントロピーは温度変化、圧力変化で変化します。
温度変化は無いので温度変化相当のΔSは0。
圧力変化相当のΔSは理想気体の状態式(PV=RT)とエントロピー計算式(これも微分形)から導出され
-nR*ln(P1/P0)・・・微分形を圧力P0からP1まで積分した結果
となります。

n 理想気体mol数: 0.022 (mol)
R 理想気体定数: 8.31 (J/mol.K)
P0 変化前の圧力: 17MPa = 17000KPa
P1 変化後の圧力: 100KPa

圧力変化相当のΔS = - 0.022 x 8.31 x ln(100/17000) = 0.934 (J/K)

まとめますと

ΔG = ΔH - TΔS
ΔH = 0
T 環境温度: 298 (K)
ΔS = 0.934 (J/K)
ΔG = 0 - 298 x 0.934 = - 278.3 (J)

まどろっこしい説明になりましたが理想気体の圧力変化に伴うギブス自由エネルギー変化量(ΔG)は
ΔG = nRT*ln(P1/P0)
でさっと計算できます。

ギブス自由エネルギー(G)の定義は
G = H - TS
H: エンタルピー (J)
S: エントロピー (J/K)
T: 環境温度 (K)

ギブス自由エネルギー変化量(ΔG)は
ΔG = ΔH - TΔS

エンタルピー,エントロピーは対象とする系の
1)温度
2)圧力
3)物質の相の数
4)各相での各成分量
が決まると計算できます。

言いかえると、上記1)2)3)4)のどれかが変化するとエンタルピー,エントロピー、そしてギブス自由エネルギーも変化します。

問題を上記1)2)3)4)に照らし合わせると、
1)温度は変化したと記述していないので一定
2)圧力は17MPaか...続きを読む

QX線のKαって何を意味するのでしょう?

タイトルのまんまですが、XRD、XPSなどで使われる特性X線のCu-Kα線、Mg-Kα線のKαってなにを意味するものなのでしょうか?
ちょっと気になった程度のことなので、ご覧のとおり困り度は1ですが、回答もきっとそんなに長くならないんじゃないかと思うのでだれか暇な人教えて下さい。

Aベストアンサー

ちょっとうろ覚えなんですが。。。

X線は、フィラメント(主にタングステン(W)が用いられている)から電子を取り出し(加熱で)、それをX線を発生するターゲット(アルミニウム(Al)やマグネシウム(Mg)や銅(Cu))などに電子を衝突させて発生させます。
ターゲットとなる材料の電子軌道はそのエネルギ-準位がとびとびでかつ元素によって特有の値を持ちます。電子衝突によって飛び出した電子が仮にK殻の電子であったとします。K殻は他の殻(LやM)に比べて低いエネルギーにあるので、L殻やM殻の電子は安定した状態を保とうと、K殻へ落ち込みます。このとき(K殻のエネルギー)-(L殻のエネルギー)に相当するエネルギーがあまるので、これがX線となりこのエネルギーをもつX線が発生します。

そこで、potemkineさんの質問にあるとおり、Kαとかの命名法ですが、Kに相当するものは電子が衝突して飛び出した殻を示し、αは飛び出した殻に対していくつ外側の殻から電子が飛び出したのかを示すもので、1つ上からならα、2つ上ならβ。3つ上ならγといったようにあらわします。
例えば、K殻の電子が飛び出し、そこをM殻が埋めた場合(2つ上の準位)はKβ、L殻の電子が飛び出しそこをM殻が埋めた場合はLα
ちなみに下からK殻、L殻、M殻、N殻の順番です。

エネルギーや半値幅(エネルギーの広がり)の面から一般に用いられてるX線は、AlKα、CuKα、MgKαなどです。

ちょっとうろ覚えなんですが。。。

X線は、フィラメント(主にタングステン(W)が用いられている)から電子を取り出し(加熱で)、それをX線を発生するターゲット(アルミニウム(Al)やマグネシウム(Mg)や銅(Cu))などに電子を衝突させて発生させます。
ターゲットとなる材料の電子軌道はそのエネルギ-準位がとびとびでかつ元素によって特有の値を持ちます。電子衝突によって飛び出した電子が仮にK殻の電子であったとします。K殻は他の殻(LやM)に比べて低いエネルギーにあるので、L殻や...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報