今だけ人気マンガ100円レンタル特集♪

yの2乗をxで微分すると2y×dy/dxになるのはなぜなんでしょうか?

高校数学レベルで教えてください。よろしくお願いいたします。

A 回答 (3件)

 高校数学レベルでしたら <合成関数の微分> を使えば、そうなるのですが、それは使わないと言うことでしょうか。



 でしたら、微分の定義式から導くことになります。

 d{y(x)}^2/dx
=lim[h→0] [{y(x+h)}^2-{y(x)}^2]/h
=lim[h→0] [y(x+h)-y(x)]/h {y(x+h)+y(x)}
=dy(x)/dx 2y(x)

 公式などに頼らない場合は、基本(定義式)に戻って考えてください。
    • good
    • 2

ANo.1ですが、書き忘れがありました。


「aのb乗」をa^bと表しました。

つまりy^2は「yの2乗」で、
x^2は「xの2乗」を意味します。
    • good
    • 7

合成関数の微分で考えてみてください。



f(g(x))をxで微分するとf'(g(x))g'(x)になるというのはやりましたよね。
今回の場合、f(x) = x^2, g(x) = yと考えてみましょう。
y^2はf(g(x))という合成関数と考えることができますよね。
するとf'(x) = 2xなのでf'(g(x)) = 2y。
g'(x) = y'(つまりdy/dx)なので

{ f(g(x)) }'
= f'(g(x))g'(x)
= 2y・(dy/dx)

となります。
    • good
    • 11

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qyをxで微分するときの微分の仕方の違いがよくわかりません。

(1)xy=2の両辺をxで微分すると
x'y+xy'=0で
1*y+x*dy/dx=0になるのはとりあえず理解しました。
ですが、
(2)x^2/9+y^2/4=1の両辺をxで微分すると
2x/9+2yy'/4=0となるのがよくわかりません
(1)の1*y+x*dy/dx=0で
yをxで微分すればdy/dxとなるはずなのに、
なせ(2)では2yy'/4となっているのでしょうか?
ここは2ydy/dxとはなぜならないのでしょうか?
お願いします。

Aベストアンサー

>なせ(2)では2yy'/4となっているのでしょうか?
ここは2ydy/dxとはなぜならないのでしょうか?
2yy'/4=2ydy/dx/4ですよ
つまりy'=dy/dxでy'とdy/dxは同じ意味です。

dy/dxを略してy'
d^2y/dx^2を略してy''
というのはよく使われます。

QX^2+Y^2=r^2 の両辺をXで微分すると、X+YY’=0 

X^2+Y^2=r^2 の両辺をXで微分すると、X+YY’=0 
なぜこうなりますか?
2X+2Y=0
ではないでしょうか?
これを解いた過程を教えてください。

Aベストアンサー

dy
―=
dx

dy dt
―・―
dt dx
の公式使います

dy^2
―  =
dx

dy^2 dy
―  ―  =
dy  dx

 dy
2y―
 dx

dy/dxっていうのはy'と書くこともできますから

2x+2yy'=0⇔x+yy'=0になります

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Qe^xを微分するとe^xになる理由

大学1年のものです。

(e^x)'=e^xの証明がわかりません。
高校で習ったような気もしますが、習ってないような気もします。

ここの過去の質問も見させてもらったところ、2つほど見つけたのですが、

1)
y=e^x
logy=x
(1/y)y'=1
よって  y'=y=e^x



2)  e^xを無限級数に直して微分



1)の場合d(logx)/dx=1/x…(*)を利用していますが、(*)は(e^x)'=e^xを利用せずに証明できるのでしょうか?

2)の場合、e^xを無限級数に直すためには、テーラー展開をしないとダメなような気がするのですが、テーラー展開をするときに(e^x)'=e^xを利用しなければならないような気がします。



1)、2)とも(e^x)'=e^xの証明に(e^x)'=e^xを利用しているとすればこれらは意味を成さないような気がするのですが…


微分の定義に沿って証明しようともしましたが、

(e^x)'=lim{h→0}(e^x((e^h)-1)/h)

となり、ここで行き詰ってしまいました。



(e^x)'=e^xはなぜ成り立つのでしょうか?
よろしくお願いします。

大学1年のものです。

(e^x)'=e^xの証明がわかりません。
高校で習ったような気もしますが、習ってないような気もします。

ここの過去の質問も見させてもらったところ、2つほど見つけたのですが、

1)
y=e^x
logy=x
(1/y)y'=1
よって  y'=y=e^x



2)  e^xを無限級数に直して微分



1)の場合d(logx)/dx=1/x…(*)を利用していますが、(*)は(e^x)'=e^xを利用せずに証明できるのでしょうか?

2)の場合、e^xを無限級数に直すためには、テーラー展開をしないとダメなよ...続きを読む

Aベストアンサー

orangeapple55さんのおっしゃるとおり、「一般的には」1)も2)も(e^x)'=e^xを用います。
従って1)にも2)にも頼らず、定義によって微分することにしましょう。

(e^x)'
=lim[h→0](e^x((e^h)-1)/h)
=e^xlim[h→0]{((e^h)-1)/h}

となるので、結局問題は
lim[h→0]{((e^h)-1)/h}……(*)
の収束性に帰着します。

そこで、この極限について考察してみましょう。以下、適宜e^xをexp(x)と表現します。

まず、h>0のときについて考えましょう。
このとき、exp(h)>1ですから実数t>0を用いて
exp(h)=1+1/t……(1)
と表すことができます。

指数関数は連続ですから、
lim[h→0]exp(h)=1
ゆえに
lim[h→0]t=∞
つまり、
h→0のときt→∞……(2)
が成り立ちます。

また、h=log(exp(h))を利用すると、(1)よりh=log(1+1/t)……(3)
ですから、(1)、(2)、(3)より、(*)はtを用いて
(*)=lim[t→∞]1/{tlog(1+1/t)}=lim[t→∞]1/log{(1+1/t)^t}
と書き直すことができます。

さて、対数関数も連続ですから、
lim[h→0]log{(1+1/t)^t}=log{lim[h→0]{(1+1/t)^t}}です。
そこで、lim[h→0]{(1+1/t)^t}に注目しましょう。

nを自然数とします。そうすれば、二項定理を用いて
(1+1/n)^n
=1 + nC1*(1/n) + nC2*(1/n)^2 + …… + (1/n)^n
=1 + 1 + (1-1/n)/2! + (1-1/n)(1-2/n)/3! + …… + (1-1/n)(1-2/n)……(1-(n-1)/n)/n!……(4)
と展開できます。

(1+1/(n+1))^(n+1)
を同じように展開すると、(1+1/n)^nに比べて
イ:項数が増え
ロ:個々の項が増大する
ことが容易に確認できますから、(1+1/n)^nはnが増すと単調増加します。
しかも、(4)より、

(1+1/n)^n
<1 + 1/1! + 1/2! + …… 1/n!
<1 + 1 + 1/2 + 1/2^2 + …… + 1/2^(n-1)
<1 + (1-(1/2)^n)/1-1/2
<3

ですから、(1+1/n)^nは上に有界(どんなnをとってきても(1+1/n)^n<MとなるMが存在する。今の場合例えばM=3)です。

ここで公理を使います。
「上に有界かつ単調増加な数列は収束する」
これは実数の連続性を認めないと出てこない公理なのですが、今はとりあえず認めることにしましょう。そうすると、

「(1+1/n)^nは3以下のある値に収束する」

ことが分かります。これを私たちはeと定義したのでした。
以下、証明は省きますが、xを実数としても、(1+1/x)^xはやはりx→∞でeに収束することは容易に類推できると思います。
(証明が気になるなら図書館で解析に関する本を探してみてください。おそらく載っていると思います)

さて、このeを底にとった対数関数を自然対数logと決めたのですから、結局のところ
log{lim[h→0]{(1+1/t)^t}}=log(e)=1
が出ます。よって、(*)=1、つまり、(e^x)'=e^xを示すことができました。h<0についても同様です。

適当なことを言いたくなかったので、長くなってしまいました。すいません。
整理すると、
(1)(1+1/x)^xはx→∞で2.71ぐらいに収束する(収束値をeと名付ける)
これが一番最初にあります。これを用いて、
(2)e^xを指数関数とする
(3)logxをその逆関数とする
これが定義されます。この順番を理解していないと、おかしな循環論法に陥ります。

(注:冒頭で「一般的には」と書いたように、これと違った定義の仕方もあります。
たとえばe^x=1+x/1+x^2/2!+……と先に指数関数を定義してしまう方法。
これらに関しても、順番に注意すれば循環論法に陥らずに公理のみから件の命題を証明することができるでしょう)

最後に、僕は以上でいくつか仮定をしています。
対数関数が連続であること。指数関数が連続であること。
実数の連続性。(1+1/x)^xはxが実数であってもx→∞でeに収束すること。
これらの証明(あるいは公理の必然性)をあたってみることは決して無駄ではないと思います。

orangeapple55さんのおっしゃるとおり、「一般的には」1)も2)も(e^x)'=e^xを用います。
従って1)にも2)にも頼らず、定義によって微分することにしましょう。

(e^x)'
=lim[h→0](e^x((e^h)-1)/h)
=e^xlim[h→0]{((e^h)-1)/h}

となるので、結局問題は
lim[h→0]{((e^h)-1)/h}……(*)
の収束性に帰着します。

そこで、この極限について考察してみましょう。以下、適宜e^xをexp(x)と表現します。

まず、h>0のときについて考えましょう。
このとき、exp(h)>1ですから実数t>0を用いて
exp(h)=1+...続きを読む

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Qxのx乗の微分は?

ある問題を解いていると、途中の計算でxのx乗の微分を求めなければならなくなったのですが、xのx乗を微分するとどうなるのか完全に忘れてしまいました。どなたか分かる方いませんか?

Aベストアンサー

y=x^x ・・・(1)

両辺対数をとると

log y =xlogx ・・・(2)

微分すると

(1/y)y'=logx+1 ・・・(3)

y'=(logx+1)y ・・・(4)

y'=(logx+1)x^x ・・・(5)

(5)式の形だと思います。

Qdxやdyの本当の意味は?

宜しくお願いします。

昔、高校で
dy/dyの記号を習いました。これは分数ではなくて一塊の記号なのだと習いました。
が、微分方程式ではdyとdxをばらばらにして解を求めたりします。
「両辺をdy倍して…」等々、、、
また、積分の置換積分では約分したりもしますよね。

結局、dy/dxは一塊ではないんですか??やはり分数なのですか?
(何だか高校の数学では騙されてたような気がしてきました)
一塊の記号でないのなら分数っぽい記号ではなくもっと気の利いた記号にすればいい
のにとも思ったりします。

実際の所、
dxの定義は何なんですか?
dyの定義は何なのですか?
本当はdxとdyはばらばらにできるのですか?

どなたかご教示いただけましたら幸いでございます。

Aベストアンサー

数的に定義するというのが、いわゆる微分形式というもののことで、完全に代数的にこれらを定義することができます。ただ、定義しただけでは普通の微分とどう関係があるのか分かりにくく、その辺りは大学の2回生程度の数学になります。

dxというのは微分形式の立場からいうと、xという(座標)関数の全微分のこと、つまりd(x)のことです。dという記号はここでは全微分を表す記号だと思ってください。別の座標yを取ったとき、yの全微分をd(y)と書きます。現実には、座標といったときは曲がった座標を取るよりは、普通のまっすぐなユークリッドの座標xを基準に取ることがほとんどです。そういうわけで、微分形式(特に1次の微分形式)はdxを基準に取ることが普通です。もちろんdyも1次の微分形式と呼ばれます。なにやら難しそうだけれども、dxや、dyといったものは、座標関数の全微分を表すものなんだ、ということで、単独で定義できるものだということは理解しておいて欲しいと思います。

さて、ふたつの座標x、yには通常ある種の関数関係があることがほとんどです。たとえばy=log xなど。これはグラフのイメージでいうと、普通のグラフを対数グラフにした、というイメージです。あるいは、中学高校でよくやっているのは(もちろん意識してませんが)、x軸かy軸を適当に尺度を変えてやるという変換、y=axというのもよくやります。さて、このときyの全微分をxの全微分で表せないか?ということを考えます。それが次の式です。大学では多変数バージョンを普通やります。

y=f(x)とyがxの関数でかけているとき、yの全微分d(y)はxの全微分d(x)を用いて、
d(y)=f'(x)d(x)
と表される。

これは微積分でやる置換積分の公式(チェイン・ルール)と呼ばれるものそのものです。代数的取り扱いに慣れているのならば、微分形式を抽象的な階数付交代代数と思うことができて、上で表されるチェイン・ルールが成り立つもの、と定義してもよいかと思います。いずれにせよ、微分形式の立場からいうと、d(x)やd(y)は単独に定義できる諸量です。

その意味では、dy/dxという記号は二つの意味に解釈できます。すなわちyというxの関数をxで微分した、という単なる記号だと思う方法(もちろんそれはy=f(x)であるときは、f'(x)を指すわけです)、ただし(d/dx)yと書くほうが望ましい。もうひとつは、微分形式dyとdxの変換則とみる(つまりdyとdxの比だと思う)という方法です。これはdy=f'(x)dxなのだから、dyはdxに比例定数f'(x)で比例している、と思うのだ、というわけです。分数の表記は形式的な意味しか持ちません。ですが、この両方の解釈をよくよく考えてみると、dy/dxは本当に分数のように扱うことが出来ることも意味しています。むしろそうできるように微分形式(dyとかdxとか)の記号を作ったと思うほうがよいでしょう。もう一度かくと、(d/dx)y=dy/dxなのだ、ということです。左が微分記号だと思う立場、右が微分形式の比だと思う立場。いずれも同じ関数f'(x)になっているのです。学習が進めば進むほど、この記号のすごさが理解できると思います。うまく出来すぎていると感嘆するほどです。

微分記号と思うという立場にたったとき、なぜd/dxと書くのか、あるいは積分記号になぜdxがつくのか、ということは高校レベルの数学では理解することはできません。もともとたとえばニュートンなんかが微分を考えたときは、d/dxなどという記号は使わず、単に点(ドット)を関数の上につけて微分を表していたりしました。そういう意味では、現在の微分記号のあり方というのは、単に微分するという記号を超えて、より深遠な意味を持っているとてもすごい記号なのだといえます。

なお蛇足ですが、1次の微分形式は、関数xの微小増加量(の1次近似)とみなすことができて、その意味で、無限小量という解釈も出来ます。物理などでよく使われる考え方です。またこれは大学3年レベルだと思いますが、微分形式を積分したりします。実はそれが高校でも現れる、∫(なんとかかんとか)dxというやつなのです。

数的に定義するというのが、いわゆる微分形式というもののことで、完全に代数的にこれらを定義することができます。ただ、定義しただけでは普通の微分とどう関係があるのか分かりにくく、その辺りは大学の2回生程度の数学になります。

dxというのは微分形式の立場からいうと、xという(座標)関数の全微分のこと、つまりd(x)のことです。dという記号はここでは全微分を表す記号だと思ってください。別の座標yを取ったとき、yの全微分をd(y)と書きます。現実には、座標といったときは曲がった座標を取るよりは、...続きを読む

Q大学の微分方程式の問題なんですが、

大学の微分方程式の問題なんですが、

y*d二乗y/dx二乗+(dy/dx)二乗+1=0

解るかたいたら教えてください!何度やってもとけません!

解答は y二乗+(x+c)二乗=d二乗 (c、dは定数) です。

Aベストアンサー

(y^2)'=2yy'
(yy')'=yy"+(y')^2
ということに着目して積分するだけです。

yy"+(y')^2 +1=0

両辺積分して
yy' +x+c=0 ← cは積分定数

2倍して
2yy'+2(x+c)=0

両辺積分して
y^2+(x+c)^2=d^2 ← 左辺≧0のため積分定数をd^2とおく。

Q微分のdx/dtというような表記の仕方がいまいち良くわかりません

記号の意味そのものは良くわかるのですが…
そのdx/dtに掛けたり割ったりする感覚が良くわかりません。
dy/dt×dt/dx=dy/dxのような?感じです
また、高次導関数をd^ny/dx^nと表記する仕組みも良くわかりません。
なぜ分数で言う分子の位置ではdに指数がついているのに分母の位置にではxに指数が付いているのか…まったくの謎です。
数学が苦手なので基礎的な部分から教えてください

Aベストアンサー

こんばんは。

dy/dx は、ある瞬間(xの微小変化)における、
xの変化量に対するyの変化量の割合です。

たとえば、y = x^2 という関数のグラフを例に取りますと、


xがaからa+2に変化するときの、xの変化に対するyの変化の割合
 = (y(a+2)-y(a))/(a+2 - a)
 = ((a+2)^2 - a^2)/(a+2 - a)
 = (4a + 4)/2
 = 2a + 2


xの変化の幅を1つ減らせば、

xがaからa+1に変化するときの、xの変化に対するyの変化の割合
 = (y(a+1)-y(a))/(a+1 - a)
 = ((a+1)^2 - a^2)/(a+1 - a)
 = 2a + 1


では、xの変化をさらに1つ減らした場合を考えます。
それは、xをaからaに変化させるということです。
aがいかなる値であっても、y=x^2のグラフには、たしかに傾きがありますが、
傾きというのは、変化の割合と同じです。
ですから、答えがあるはずです。
そこで、上記と同じく、x=a における変化の割合を求めるとすると、どうなるかと言えば、
(y(a)-y(a))/(a-a) = 0/0 (=不定)
という、わけのわからない結果となってしまいます。
しかし、グラフの傾きも、変化の割合も存在するはずです。

そこで、非常に小さい変化量を、dをつけた記号で表すことを考えます。

xの変化は、 a → a+dx
yの変化は、 y(a) → y(a+dx)

xの変化量は、dx ( = a+dx - a)
yの変化量は、dy = y(a+dx) - y(a)
です。


x=aにおける、xの変化に対するyの変化の割合
 =(y(a+dx)-y(a))/(a+dx - a)
 = ((a+dx)^2 - a^2)/(a+dx - a)
 = (2adx + (dx)^2 )/dx
とすることができます。

分子に(dx)^2 がありますが、
dx自体が非常に小さい量ですので、(dx)^2 は、全く無視してよい量となります。
よって、
x=aにおける、xの変化に対するyの変化の割合
 = (2adx + (dx)^2 )/dx
 = 2adx/dx
 = 2a
となります。

これで、x=a のときの dy/dx は、 2a と表せることがわかりました。

ということは、いかなるxの値についても、
dy/dx = 2x
であるということです。

以上のことで、
・x^2 を微分したら 2x になること
・dy/dx は、xの変化に対するyの変化の割合
の意味がおわかりになったと思います。


そして、
たとえば、y、t、x の3変数があって、
ある地点において、
tの変化量のxの変化量に対する割合が4で、
yの変化量のtの変化量に対する割合が3だとしましょう。
すると、xが1変化するのに対してyは12変化します。
dt/dx = 4
dy/dt = 3
dy/dx = 12 = 3 × 4 = dy/dt・dt/dx


なお、
高次導関数の表記については、単なる約束事だと思っておけばよいです。
素直に書けば、
1回微分は、dy/dx
2回微分は、d(dy/dx)/dx
3回微分は、d(d(dy/dx)/dx)/dx
ということになりますが、これでは見にくいので。


以上、ご参考になりましたら幸いです。

こんばんは。

dy/dx は、ある瞬間(xの微小変化)における、
xの変化量に対するyの変化量の割合です。

たとえば、y = x^2 という関数のグラフを例に取りますと、


xがaからa+2に変化するときの、xの変化に対するyの変化の割合
 = (y(a+2)-y(a))/(a+2 - a)
 = ((a+2)^2 - a^2)/(a+2 - a)
 = (4a + 4)/2
 = 2a + 2


xの変化の幅を1つ減らせば、

xがaからa+1に変化するときの、xの変...続きを読む

Q分母が文字の分数を微分する方法を教えてください。

分母が文字の分数を微分する方法を教えてください。


8/xを微分すると、-8/x二乗になるようなんですけど、なぜそうなるのか教えてください。

数学は大の苦手なので、分かりやすくお願いします:(;゛゜'ω゜'):

Aベストアンサー

x^nをxで微分するとnx^(n-1)になるというのは習ったと思いますが、
それを利用します
(ちなみに記号^は累乗の記号です。a^bは「aのb乗」を意味します)。

8/x = 8x^(-1)と変形して、無理矢理x^nの形に直します。
x^nをxで微分するとnx^(n-1)になるので、
x^(-1)をxで微分すると-x^(-2)となります。
よって8x^(-1)をxで微分すると-8x^(-2) = -8/(x^2)となります。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング