ちょっと変わったマニアな作品が集結

m-ニトロ安息香酸メチルの合成をおこないました。
安息香酸メチルに濃硫酸、濃硝酸を加えて行う方法です。

理論値を出す場合、o体およびp体についても考えなくてはいけないですよね?
もしそうである場合、その生成比はいくつになるのでしょうか?

このQ&Aに関連する最新のQ&A

A 回答 (1件)

>安息香酸メチルに濃硫酸、濃硝酸を加えて行う方法です。


濃硫酸、濃硝酸に安息香酸メチルを加えたんじゃないですか?化学反応を扱う場合、こういったことは厳密に区別して書くべきです。

>理論値を出す場合、o体およびp体についても考えなくてはいけないですよね?
何を想定しているのでしょうか?たとえば、1.00モルの安息香酸メチルを基質とし、p体が0.30モル得られたのであれば、収率は30%ということになります。o体とp体が合計で1.00モル得られるというのが理論上の上限です。ただし、あなたがどういう意味で「理論値」という言葉を用いているのかにもよります。初学者の中には文献に書かれている収率が理論値であると勘違いしている人もいますし、オルトとパラの反応速度比、あるいはオルトが2カ所、パラが1カ所であることによる統計的な割合を理論値と見なすことも可能です。つまり、どういった理論、あるいは意図に基づいているかによって理論値は変わりうるということです。ですのであなたの言う「理論値」が何であるかわからなければ明確な回答は出来ません。
仮に反応速度などの情報が全くない状態で統計的に判断せよということであれば、オルトとパラの生成比は2:1ということになりますし、その場合であればメタを除外する理由もありませんので収率で言えばオルトとメタが各40%でパラが20%ということになります。ただし、前述の理由でこれがあなたの求めている回答かどうかはわかりません。

いずれにせよ「理論値」の意味をもっと明確にして下さい。
    • good
    • 0
この回答へのお礼

回答ありがとうございます!
私が行った実習では、たしかに安息香酸メチルに濃硝酸と濃硫酸の混液を加えました。

理論値は様々な意味に解釈されるのですね。
私は最初異性体のことを考えずに、安息香酸:m-ニトロ安息香酸メチルを1:1と考えてしまっていたので、安息香酸の物質量にm-ニトロ安息香酸メチルの分子量をかけていました。しかし、副生成物もできるはずなのでおかしいと思い、この実験ではオルト、メタ、パラがx対y対zでで生成するといった数字を探していました。
しかし、(反応速度の情報はないので)置換される場所の数などで比率を求めることができるものなのですね!(考えてみると確かにそうなのですが)
目からうろこです^^

お礼日時:2011/05/06 22:16

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qm-ニトロ安息香酸メチルの合成

実験で安息香酸メチルに5-15℃で濃硝酸と濃硫酸の混酸を混ぜて そのあと室温に放置し、温度を温めました。それから、50gの氷を入れたビーカー中に溶液を注ぎ出しました。この操作も意味がよくわかりません。氷ですから、0℃近くまで下がったものに溶液を触れさせることで液温を下げるのが目的でしょうか。m-ニトロ安息香酸メチルの融点からすると、そんなに温度を下げなくてもいいのではないかと思います。それに、溶液中に濃硫酸があるため、氷の一部が溶けて水と触れ合う危険性はないのでしょうか?
このあと、大部分の氷の溶けるのを待って析出してきた固体を吸引ろ過しました。ろ過したろ紙上の固体に水で不純物を洗い流したあと、メタノールでも洗うのは濃硫酸の除去であっていますか?

Aベストアンサー

全体として、この反応での温度制御は重要です。それをおろそかにすると発熱のために危険になったり、目的物の収量が低下したりします。

>実験で安息香酸メチルに5-15℃で濃硝酸と濃硫酸の混酸を混ぜて
反応熱による発熱煮よる危険、副反応を回避するため。

>そのあと室温に放置し、温度を温めました。
反応を完結させるため。

>それから、50gの氷を入れたビーカー中に溶液を注ぎ出しました。
反応剤(混酸など)を安全に分解するため。逆に水を反応液に入れると危険。温度を下げることは危険回避のために重要です。

>m-ニトロ安息香酸メチルの融点からすると、そんなに温度を下げなくてもいいのではないかと思います。
融点は関係ありませんが、温度が高いと溶解度が上昇しますので、水に溶けた分が失われ、収率が低下する可能性があります。現実問題として、水に溶けるものは少ないでしょうが、この手の実験操作の常道です。また、生成物は不純物を含んでいるので、文献の値よりは融点が低いのが普通です。そのため、温度を低くしておいた方が結晶の状態も良くなり、操作がうまく行きます。

>それに、溶液中に濃硫酸があるため、氷の一部が溶けて水と触れ合う危険性はないのでしょうか?
それがあるから、十分な量の氷に注ぎます。

>ろ過したろ紙上の固体に水で不純物を洗い流したあと、メタノールでも洗うのは濃硫酸の除去であっていますか?
水で洗うのは混酸を除くためです。メタノールで洗うのは、水を除くためです。そうすることによって固体が乾きやすくなるということです。また、不純物となっている有機化合物を除く意味もあるでしょう。

全体として、この反応での温度制御は重要です。それをおろそかにすると発熱のために危険になったり、目的物の収量が低下したりします。

>実験で安息香酸メチルに5-15℃で濃硝酸と濃硫酸の混酸を混ぜて
反応熱による発熱煮よる危険、副反応を回避するため。

>そのあと室温に放置し、温度を温めました。
反応を完結させるため。

>それから、50gの氷を入れたビーカー中に溶液を注ぎ出しました。
反応剤(混酸など)を安全に分解するため。逆に水を反応液に入れると危険。温度を下げることは危険回避の...続きを読む

Q安息香酸メチルのニトロ化について

有機化学の求核置換反応の実験で、安息香酸メチルのニトロ化で混酸を加えたとき黄色くなったのはどのような化合物ができているのですか?ちなみに混酸を作るとき温度が18度まで上がってしまいました。教えてください。

Aベストアンサー

> 安息香酸メチルのニトロ化で混酸を加えたとき黄色くなったのは
> どのような化合物ができているのですか?

 これは2つ考えられます。一つは,皆さんがお書きの 3,5-ジニトロ安息香酸メチル(methyl 3,5-dinitrobenzoate)の副生です。もう一つは,NO, NO2, N2O3 等の混入です。これらのガス(全てかどうかは忘れましたが)は黄色い色をしています。混酸作製時に温度が上がりすぎて,これらのガスが多量にできていると,反応生成物の結晶中に混ざり混で黄色い色を呈する可能性があります。

> 教授には温度が上昇しすぎたために

 この温度とはいつの温度でしょうか。後で述べますように,ニトロ化時の温度ならジニトロ体の可能性が高くなります。

> 水で結晶をよく洗えと言われました。

 これは何故だかわかりますか。実験のレポ-トだそうですので,簡単なヒントだけ。
 まづ,水で洗って除けるという事は溶解度が違うわけですね。モノニトロ体とジニトロ体のどちらが酸として強いでしょうか。強い酸の方が相手(今の場合水分子)に H+ を与えやすいですから,水に溶けやすいと考えられます。つまり,水洗で容易に除けます。
 酸の強さを考える場合,ニトロ基の効果はI(インダクティブ)効果やR(レゾナンス)効果はどう影響するでしょうか。


> 有機化学の求核置換反応の実験で

 この反応は「求核置換反応」ではありません。マイナス電荷を持った試薬(求核剤)がプラス電荷を攻撃しているわけではないからです。

 この反応では,ベンゼン環のπ電子に対して NO2(+) イオンが攻撃します(親電子攻撃)。結果としてできる化合物は,ベンゼン環の水素がニトロ基に置換(置換反応)された化合物です。つまり,この反応は親電子置換反応です。

 教科書の該当ヶ所を御覧になればわかるとは思いますが,ニトロ基はベンゼン環の電子を引っ張って,この反応を起こり難くします。したがって,通常ではジニトロ体はでき難いのですが,反応温度が高いと副生する可能性が高まります。

 いづれにしても,教科書の親電子置換反応や芳香環の反応性の辺りを参考になさって下さい。

> 安息香酸メチルのニトロ化で混酸を加えたとき黄色くなったのは
> どのような化合物ができているのですか?

 これは2つ考えられます。一つは,皆さんがお書きの 3,5-ジニトロ安息香酸メチル(methyl 3,5-dinitrobenzoate)の副生です。もう一つは,NO, NO2, N2O3 等の混入です。これらのガス(全てかどうかは忘れましたが)は黄色い色をしています。混酸作製時に温度が上がりすぎて,これらのガスが多量にできていると,反応生成物の結晶中に混ざり混で黄色い色を呈する可能性があります。

> 教授には...続きを読む

Q安息香酸メチルのニトロ化

有機化学実験で安息香酸メチルのニトロ化を行ったのですが、副生成物としてはo位、m位のニトロ安息香酸メチル、ジニトロエステル(これは2,4-ジニトロ安息香酸メチルでしょうか?)以外はできないのでしょうか?安息香酸メチルの加水分解も考えたのですが、濃硫酸があるのでできないのではないかと思いました。

また、冷メタノールで粗結晶生成物を洗ったのですが、この時、どのような物質が何%溶解したかが載っている書籍・論文はありますでしょうか?

Aベストアンサー

取り敢えず、以下のように考えて下さい。
まず、有機化合物の数は極めて多いので、化学大辞典などで有力な情報が得られることは少ないと思った方が良いでしょう。ある程度、ありふれたものであれば Merck Index を調べればある程度のことはわかります。また、Aldrichの試薬カタログを調べれば融点、沸点程度のことはわかります。ニトロ安息香酸程度であれば、それらでわかるでしょうし、ネット検索でもわかると思います。

反応については、有機化学の教科書に概要は書かれているはずです。ニトロ化というのは芳香族化合物の求電子置換反応の所に書かれています。そこに、反応機構も書かれているはずですし、配向性、つまり、2個目の置換基がどこに入るかということも書かれています。この場合であれば、-COOR基の配向性を調べれば、m配向性であることがわかるはずです。

一般に、有機化合物の多くは水に溶けにくいですので、ニトロ化の際の反応溶液に水を加えると有機化合物が分離してきます。固体が分離してきたということは、それが反応生成物ということでしょうし、その中の主成分はm-ニトロ安息香酸メチルであろうと予想されます。

反応の際の色の変化に関しては、あまり気にする必要はありません。少量の副生成物のために、本来の色とは異なる色の物質が生じることがよくあるからです。ニトロ化の際に黄色になることは多いですが、それが何によるものであるかについては私にはわかりません。もちろん想像することはできますが、断定することはできません。反応機構を検討する上で、想定されている中間体になっていると考えられる物質によるものであるかもしれません。

取り敢えず、以下のように考えて下さい。
まず、有機化合物の数は極めて多いので、化学大辞典などで有力な情報が得られることは少ないと思った方が良いでしょう。ある程度、ありふれたものであれば Merck Index を調べればある程度のことはわかります。また、Aldrichの試薬カタログを調べれば融点、沸点程度のことはわかります。ニトロ安息香酸程度であれば、それらでわかるでしょうし、ネット検索でもわかると思います。

反応については、有機化学の教科書に概要は書かれているはずです。ニトロ化というのは...続きを読む

Q安息香酸メチル

安息香酸メチルのニトロ化反応では、メタ位の置換異性体がパラ位やオルト位の置換異性体よりも多く生成するのはなぜなのでしょうか??

Aベストアンサー

メトキシカルボニル基(-COOCH3)がメタ配向性だからです。
すなわち、メトキシカルボニル基は電子求引性をもち、そのために、オルト位およびパラ位で置換する際の中間体(シグマ錯体)を不安定化します。その結果、オルト位とパラ位での反応が起こりにくくなり、結果的にメタ位で反応した生成物が多くなるということです。

http://www.kochi-u.ac.jp/~tatukawa/edu/mondai/2004/b3sb052/kaisetu.html

http://homepage3.nifty.com/junkchem/i/ichem148.htm

Q塩化tert-ブチルの合成

tert-ブチルアルコールに塩酸を反応させ、過剰分を炭酸水素ナトリウムで中和し、塩を水で洗浄して、塩化tert-ブチルを得ました。

この操作の中で水で洗浄した塩とはどういった物質なのでしょうか?

また洗浄後の水は酸性を示しました。
どういった理由からでしょうか?

教えて下さい。
よろしくお願いします。

Aベストアンサー

塩化tert-ブチルは水との反応で、比較的容易に加溶媒分解(SN1)されます。その割合はわずかでも、pH値はかなり大きく動きます。また、E1脱離がおこるかもしれません。
そのために水が酸性になったのでしょう。
(CH3)3C-Cl + H2O → (CH3)3C-OH + HCl
(CH3)3C-Cl → CH=C(CH3)2 + HCl

Q薄層クロマトグラフィー(TLC)について

現在大学で基礎実験を学んでいる女子大生なのですが・・・TLCについてわからないことがあるのでご教授いただきたいと思います。


TLCの原理で調べたのですが、極性が多大きいものほど展開も長くなると書いてありました。


私たちが今回行った実験というのが、P-ニトロ安息香酸エチルを用いてP-アミノ安息香酸エチルを合成するというものでした。

その過程で有機層と水層に分離させるという工程が3回あって、その3回をTLCチェックしました。
比較として、1枚のシリカゲル板にて、
原料(P-ニトロ安息香酸エチル)、原料+反応液、反応液
の3点測定をしました。

そのとき原料が一番展開距離が長く、反応液の方が短く出ました。


反応液にはすでに反応したP-アミノ安息香酸エチルが含まれているわけで・・・・



**************

そこで、疑問に思ったのですが、P-ニトロ安息香酸エチルに付いているNO2よりも、P-アミノ安息香酸エチルについているNH2の方が極性が高くなるのではないか?
それなら何故、TLCでP-ニトロ安息香酸エチルのほうが、長距離移動したのか?


チェックに用いているシリカゲル板のシリカゲルの吸着性に関係しているのか?
それとも、他の原因があるのか・・・・
わからずに混乱しています。


どうか、原理を交えて教えていただける方が今したら、ヨロシクお願いしますm(--)m☆

現在大学で基礎実験を学んでいる女子大生なのですが・・・TLCについてわからないことがあるのでご教授いただきたいと思います。


TLCの原理で調べたのですが、極性が多大きいものほど展開も長くなると書いてありました。


私たちが今回行った実験というのが、P-ニトロ安息香酸エチルを用いてP-アミノ安息香酸エチルを合成するというものでした。

その過程で有機層と水層に分離させるという工程が3回あって、その3回をTLCチェックしました。
比較として、1枚のシリカゲル板にて、
原...続きを読む

Aベストアンサー

「極性が大きいものほど展開距離が長くなる(=Rf値が大きくなる)」、この場合の「極性」は「展開溶媒」の話です。
同じ展開溶媒で考えた場合は、「シリカゲルに対する対象試料の吸着性が小さいほど(=相対的に、展開溶媒との親和性が大きいほど)、展開距離が長くなる」ことになります。

TLCは、「シリカゲルへの吸着」と「展開溶媒への再溶解」の平衡によって、対象試料内の複数成分を分離させるものです。
つまり、シリカゲルに吸着されやすいもの(→概ね極性が大きいもの:分子内水素結合を起こす場合など例外もあり)ほど吸着されている時間が長くなるため展開距離は短くなり、展開溶媒との親和性が大きいほど吸着されている時間が短くなるため展開距離は長くなります。
これが、TLCで複数成分を分離できる原理です。

ご質問の場合は、シリカゲル中の水酸基との水素結合などにより、ニトロ基よりもアミノ基を持っていた方が吸着性が上がるため、p-アミノ安息香酸エチルの方がRf値が小さくなった、ということでしょう。

Q有機合成(n-ブチルアルコールから塩化tert-ブチル)

塩化tert-ブチルについての有機のレポートを
やっていますが、三点わからないことがあります。

1、n-ブチルアルコールから塩化tert-ブチルへの合成方法を示せという問題です。機構がさっぱりわかりません。
2、tert-ブチルアルコールに塩酸を反応させ、過剰分を炭酸水素ナトリウムで中和し、塩を水で洗って、塩化tert-ブチルを得ました。その後リービッヒ冷却器を使って蒸留し、精製するという実験です。収量が四割程度になってしまいましたが、どのような理由があるのでしょうか。生成物の加水分解性や、副反応も考慮せよということです。

よろしくお願いします。ログはNO,526530を
参照しましたが、出発物が1級の場合と3級の場合の
違いがよくわかりません。

Aベストアンサー

n-BuOH → t-BuClではなくて
n-BuOH → n-BuClの間違いですね?

とりあえず、反応機構の違いを問うているんだと思います。
酸触媒でカルボカチオンが生じたあと、求核反応が起きるのですが、
SN1, SN2型求核反応を有機化学の教科書で調べれば
答えはわかります。

あと副生成物ですが、
アルコール自体が求核剤として働けばエーテルになりますし、
HClが脱離すればオレフィンになりますし(E1, E2型反応をチェックしましょう)、
転位が起きればクロロの位置が変わります。

一番起きそうな副反応は、この中ではE1脱離によるイソブチレンの生成の
ような気がしますが。

Q再結晶のとき。。。

ナフタレンの再結晶時にメタノールと水を加えました。最初メタノールにナフタレンを溶かし、少量の水を加えました。(水は加えても結晶が溶けてる程度)ここで水を加えるのはなぜですか?
ナフタレンは無極性で水には溶けにくいので冷やしたときに結晶が析出しやすくするためですか?
また、冷ますときは放冷ではなく氷水で急冷するとよくないことはあるのですか?

Aベストアンサー

ご質問のように、再結晶の際に2種類の溶媒を混合する操作はしばしば行われます。順を追って説明します。
(1)ナフタレンを熱いメタノールに溶かす。この操作である程度濃い溶液を作ります。飽和である必要はありません。
(2)熱いままの状態で水を少しづつ加えます。水が入ることによって、ナフタレンの溶解度が低下します。
(3)水を加えていくと、ある時点で、濁りが生じます。この時に、溶液は飽和(あるいはわずかな過飽和)になっています。
(4)この飽和溶液をゆっくりと冷やすとナフタレンの結晶が生じ、再結晶が行われたことになります。ゆっくり冷やすことによって、より大きく、純度の高い結晶が得られます。急冷すると、結晶が急速に成長し、その際に不純物が取り込まれることがあり、純度が低下する場合があります。

なお、メタノールだけで再結晶することも可能ですが、1種類の溶媒だけでは、溶解度が高すぎて、溶質に対して溶媒が少なくなりすぎ、操作が困難になる場合などに上述の方法が使われます。また、飽和溶液が作りにくいとか、再結晶溶媒の選択に困って、やむを得ず使う場合もあります。

ご質問のように、再結晶の際に2種類の溶媒を混合する操作はしばしば行われます。順を追って説明します。
(1)ナフタレンを熱いメタノールに溶かす。この操作である程度濃い溶液を作ります。飽和である必要はありません。
(2)熱いままの状態で水を少しづつ加えます。水が入ることによって、ナフタレンの溶解度が低下します。
(3)水を加えていくと、ある時点で、濁りが生じます。この時に、溶液は飽和(あるいはわずかな過飽和)になっています。
(4)この飽和溶液をゆっくりと冷やすとナフタレンの結晶が生じ、...続きを読む

Q副生成物

ベンズアルデヒドとアセトンの縮合反応で、ジベンザルアセトンが生成されるのはわかったのですが、それ以外に、どんな副生成物ができるのですか?
教えてください。

Aベストアンサー

常識的なところとしては、両者が1:1で反応して得られるベンザルアセトン(C6H5CH=CHC(=O)CH3)。

反応温度が高かったり、塩基が濃すぎたりした場合には、構造不明のポリマーが生じることがあります。これは、目的物であるジベンザルアセトンが、塩基に対してさほど安定ではないために起こる反応だと思います。溶媒として、アルコールを使っているのでしたら、アルコキシドがジベンザルアセトンに求核付加することによって始まるのかもしれません。

また、副生成物とは言わないかもしれませんが、未反応のベンズアルデヒドが残ることもあるでしょう。

Q沸点の物性値とずれる訳

こんにちは理系大学に通うものです。

先日実験をやりどうも腑に落ちない事があります。
みなさんもしよければ協力をお願いします。

ベンゼンと安息香酸の混合溶液から分離し油層のベンゼンを
蒸留するという実験でした。ベンゼンの沸点の物性値は80.1℃
なのに対し私たちの班では75℃ほどという結果がでしまいました。
普通不純物があれば沸点が上昇するはずですが沸点が降下してしまいました。
どうしてなのでしょうか?

Aベストアンサー

数日前にも似たご質問 q=259756 がありましたが、沸点上昇は「不揮発性の
物質が溶解している溶液」で起きる現象です。ベンゼンの沸点付近でしたら、
安息香酸は不揮発性物質とみなせるかもしれませんが(ここは自信なし)、
ベンゼン溶液の温度が80.1℃より高くなるまで蒸気圧が1気圧に達しない
(沸騰しない)のが沸点上昇で、留出口に設置した温度計の示度とは別問題
かと思います。

さて、沸点が文献値より低かった理由ですが、留出口で1気圧における気液平衡
が成立しているときに温度計は沸点を示します。温度計の位置や保温が悪くて
蒸気が冷えてしまった可能性を q=259756 で rei00さんが指摘されています。
蒸留装置は大気圧に開放されているはずですが、うっかり密閉系にしたりすると、
過熱蒸気が生じて沸点以上を示す(圧力釜の原理)こともあります。

水が混入して、共沸が起きていた可能性はいかがですか? 便覧をご覧になると
ベンゼン-水の共沸温度がみつかると思います。水と共沸していれば、冷却管を
流れる凝縮液が油水分離して濁るのが見えるでしょう。

余談ですが、学生実験で安易にベンゼンが使われることを残念に思います。
よろしければ q=149733 をご参照ください。 共沸でGoogle検索してみたら、
共沸の実験材料に 四塩化炭素まで使われるようで、目を疑ってしまいました。

数日前にも似たご質問 q=259756 がありましたが、沸点上昇は「不揮発性の
物質が溶解している溶液」で起きる現象です。ベンゼンの沸点付近でしたら、
安息香酸は不揮発性物質とみなせるかもしれませんが(ここは自信なし)、
ベンゼン溶液の温度が80.1℃より高くなるまで蒸気圧が1気圧に達しない
(沸騰しない)のが沸点上昇で、留出口に設置した温度計の示度とは別問題
かと思います。

さて、沸点が文献値より低かった理由ですが、留出口で1気圧における気液平衡
が成立しているときに温度計は沸点を示...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング