No.2ベストアンサー
- 回答日時:
重さmの質点が回転中心を半径r、速さvで回っている場合、角運動量Lは
L=rp=rmv=rmrω=mr^2ω (pは質点の運動量、ωは回転の角速度)
これとL=Iωを比較して I=mr^2 (Iは慣性モーメント)
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 物理学 図のように、内半径aの中空の円筒が、その中心軸が水平になるように固定されており、その中で、 質量 M 7 2023/02/15 09:23
- 物理学 半径rの滑車の両端に質量mのおもりをぶら下げて、片方のおもりを速度vで降下させたとします。 このとき 6 2023/05/09 19:10
- 物理学 摩擦クラッチを含む回転軸系で1次側と2次側の慣性モーメントはそれぞれ 3kgm^2,5kgm^2 で 4 2022/08/09 23:30
- 物理学 大学物理 1 2023/01/28 15:15
- 化学 化学 物理 回転定数Bより、HCl分子の慣性モーメントを計算せよ。HとClの質量は文献の値を用いよ。 4 2023/06/12 18:17
- 化学 化学 物理 回転定数Bより、HCl分子の慣性モーメントを計算せよ。HとClの質量は文献の値を用いよ。 3 2023/06/12 16:33
- 物理学 電磁気学 磁気物理学 磁気モーメント 2 2022/10/18 22:19
- 物理学 物理学、剛体力学でわからないところがあります。 質量m長さlの細い剛体棒、一端をOを通るなめらかな水 5 2023/02/14 10:31
- 工学 長文になって申し訳ございません。 材料力学についての質問です。 写真のように部材ごとに分けて部材に働 1 2022/11/12 21:35
- 物理学 半径aの円形コイルが、水平方向を向いた一様な磁束密度Bの中につるされている、コイルの面とBが平行にな 3 2023/05/02 01:23
このQ&Aを見た人はこんなQ&Aも見ています
-
これまでで一番「情けなかったとき」はいつですか?
これまでの人生で一番「情けない」と感じていたときはいつですか? そこからどう変化していきましたか?
-
おすすめの美術館・博物館、教えてください!
美術館・博物館が大好きです。みなさんのおすすめをぜひお聞きしたいです。
-
最強の防寒、あったか術を教えてください!
とっても寒がりなのですが、冬に皆さんがされている最強の防寒、あったか術が知りたいです!
-
この人頭いいなと思ったエピソード
一緒にいたときに「この人頭いいな」と思ったエピソードを教えてください
-
【大喜利】【投稿~1/20】 追い込まれた犯人が咄嗟に言った一言とは?
【お題】追い込まれた犯人が咄嗟に言った一言とは?
-
質量m 半径aの一様な円環の慣性モーメントの求め方を教えてください。 回答には円環はすべての部分が中
物理学
-
慣性モーメント
物理学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・思い出すきっかけは 音楽?におい?景色?
- ・あなたなりのストレス発散方法を教えてください!
- ・もし10億円当たったら何に使いますか?
- ・何回やってもうまくいかないことは?
- ・今年はじめたいことは?
- ・あなたの人生で一番ピンチに陥った瞬間は?
- ・初めて見た映画を教えてください!
- ・今の日本に期待することはなんですか?
- ・【大喜利】【投稿~1/31】『寿司』がテーマの本のタイトル
- ・集中するためにやっていること
- ・テレビやラジオに出たことがある人、いますか?
- ・【お題】斜め上を行くスキー場にありがちなこと
- ・人生でいちばんスベッた瞬間
- ・コーピングについて教えてください
- ・あなたの「プチ贅沢」はなんですか?
- ・コンビニでおにぎりを買うときのスタメンはどの具?
- ・おすすめの美術館・博物館、教えてください!
- ・【お題】大変な警告
- ・【大喜利】【投稿~1/20】 追い込まれた犯人が咄嗟に言った一言とは?
- ・洋服何着持ってますか?
- ・みんなの【マイ・ベスト積読2024】を教えてください。
- ・「これいらなくない?」という慣習、教えてください
- ・今から楽しみな予定はありますか?
- ・AIツールの活用方法を教えて
- ・最強の防寒、あったか術を教えてください!
- ・【大喜利】【投稿~1/9】 忍者がやってるYouTubeが炎上してしまった理由
- ・歳とったな〜〜と思ったことは?
- ・モテ期を経験した方いらっしゃいますか?
- ・好きな人を振り向かせるためにしたこと
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
古典的波動力学の構築・・・波...
-
回路の電圧比を求める問題について
-
RL-C並列回路のインピーダ...
-
物理です (4)のθとθ•の求め方が...
-
減衰係数の単位換算
-
相互誘導回路でコイルの向きを...
-
回転運動の粘性抵抗の測定
-
電荷qの荷電粒子が角速度ω、半...
-
強制振動の問題において、外力...
-
単振動で振幅が半分になるとき
-
物体を落とさない単振動
-
大学の物理が難しすぎることに...
-
慣性モーメント
-
複素振幅ってなんですか?
-
2自由度系の固有振動数
-
慣性モーメントについて
-
高校物理、交流、コイルの電流
-
電磁誘導の法則 (4分円の扇形...
-
物理の単振動について
-
単振動の微分方程式 x=Acos(ωt...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
RL-C並列回路のインピーダ...
-
減衰係数の単位換算
-
電荷qの荷電粒子が角速度ω、半...
-
交流回路でjは、なぜ数字の前...
-
伝達関数とゲインについて
-
RL直列回路の電流ベクトルの...
-
大学の物理が難しすぎることに...
-
複素振幅ってなんですか?
-
周波数スペクトル図の、マイナ...
-
慣性モーメントについて
-
半径がr[m]のタイヤが角速度ω[r...
-
回転運動の粘性抵抗の測定
-
物理の回路の問題です (2)の一...
-
ボード線図と漸近線について
-
リサージュ図形
-
ヨーヨー
-
遮断周波数と時定数について質...
-
単振動、 単振り子の最下点の速...
-
交流回路の虚数部の計算につい...
-
困ってます!物理の問題です。
おすすめ情報