No.1ベストアンサー
- 回答日時:
三平方の定理を使いcosα=-1/4の時の円のy座標を求める。
y^2=(4^2-(-1)^2)=15 → y=-√15 ← 第3象限であること
これからsinαの値を求める
sinα=-√15/4 後は公式を使い、三角関数の値を求めていくだけです。
sin2α=2sinα・cosα=2・(-1/4)(-√15/4)=√15/8
cos2α=1-2(sinα)^2=1-2・15/16=-14/16=-7/8
tanα=sinα/cosα=(-√15/4)/(-1/4)=√15
tan2α=tanα/(1-(tanα)^2)=√15/(1-15)=-√15/14
計算自体は簡単ですが、三角関数の公式を覚えていないといけないです。
試験では覚えていることが勝負の分かれ目になります。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 座標変換について 1 2022/08/04 16:42
- 数学 線形代数の行列についての問題がわからないです。 1 2022/07/18 17:46
- 数学 θ=π/2 のまわりでの f(θ)=sinθ/cosθのローラン展開に関して 以外の「」の解答を頂き 13 2022/11/11 09:45
- 数学 高校生です。 この問題が解説がないため合ってるか分かりません。 この回答であってますか? 回答 g( 3 2023/01/24 14:05
- 数学 高校生です。 この問題の解説がなくてこの解き方で合っているでしょうか? g(x,y)=0のとき x^ 2 2023/01/25 17:28
- 数学 複素数についての質問です。 1+iの主値を求める問題で回答が以下のようになっていました。 1+i = 5 2022/07/22 04:04
- 数学 回答者どもがなかなか答えられないようなので、考えてみました。 ∫[0,π/2]log(sinx)/( 4 2022/08/31 16:30
- 数学 三角関数教えてください! 3 2022/05/06 19:46
- 数学 数学 三角比 sin80°もsin110°もどちらもcos10°ですか? sin(90°+θ)=co 5 2023/05/07 01:44
- 物理学 物理の問題です。 1 2022/12/20 23:04
関連するカテゴリからQ&Aを探す
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・【大喜利】【投稿~11/12】 急に朝起こしてきた母親に言われた一言とは?
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・好きな「お肉」は?
- ・あなたは何にトキメキますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・ハマっている「お菓子」を教えて!
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
「強度」は高い?強い?
-
電気関係の質問なんですが・・・
-
合成関数の微分を使う時と、使...
-
積分定数Cとは一体なんですか?
-
yの二乗をXで微分したら2y・y' ...
-
「強度が弱い」という文はおか...
-
y=logX+1 の微分教えください ...
-
sin^2xとsinx^2は同じと聞きま...
-
弾塑性解析と弾性解析
-
座屈とたわみの違いを簡潔に教...
-
機械要素学
-
テーブル構造を支える脚の材料...
-
計算技術検定2級の応用計算のと...
-
角パイプのサイズ毎の耐荷重力...
-
柿の木は折れやすい
-
縞鋼板の曲げ応力度・たわみに...
-
数Ⅲ 微分 aを0<a<π/2を満た...
-
y=sin^2xcosx この関数の微分...
-
微分可能ならば連続ですが、 不...
-
振幅比の計算
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
「強度」は高い?強い?
-
yの二乗をXで微分したら2y・y' ...
-
合成関数の微分を使う時と、使...
-
「強度が弱い」という文はおか...
-
積分定数Cとは一体なんですか?
-
電気関係の質問なんですが・・・
-
縞鋼板の曲げ応力度・たわみに...
-
数Iの問題です cosθ=5分の3の...
-
sin^2xとsinx^2は同じと聞きま...
-
y=logX+1 の微分教えください ...
-
振幅比の計算
-
微分可能ならば連続ですが、 不...
-
1/cos^2θを微分したら何になり...
-
ヤング率と引張強度について す...
-
テーブル構造を支える脚の材料...
-
座屈とたわみの違いを簡潔に教...
-
柿の木は折れやすい
-
y=tan^2 x ってどうやって微分...
-
双曲線関数は、実生活上どのよ...
-
弾塑性解析と弾性解析
おすすめ情報