
A 回答 (5件)
- 最新から表示
- 回答順に表示
No.5
- 回答日時:
No.3 の「三角関数の加法定理を使って、みかけの形を変えている」というのは、下記のようなことです。
C*sin(x) + D*cos(x)
= √(C^2 + D^2) *{ [C/√(C^2 + D^2) ]*sin(x) + [D/√(C^2 + D^2) ]*cos(x) } ①
ここで、下図のように三角形を書いて、その1つの角を Φ とすれば
cos(Φ) = C/√(C^2 + D^2)
sin(Φ) = D/√(C^2 + D^2)
tan(Φ) = D/C
となります。
これを使えば、①は、三角関数の加法定理から
① = √(C^2 + D^2) *{ cos(Φ)*sin(x) + sin(Φ)*cos(x) }
= √(C^2 + D^2) * sin(x + Φ)
√(C^2 + D^2) = A と書けば
① = Asin(x + Φ)
となります。
上のように、tan(Φ) = D/C です。
補足の画像の式の「3行目から4行目への書き換え」、exp(bt) 以外の三角関数の部分をこのように書き換えているだけで、与式特有の操作をしているわけではありません。
また、最終行の「置き換え」も、上に書いたものに相当するだけの話です。

No.4
- 回答日時:
No.3です。
またまた失礼。#3 では「減衰振動」「振幅が減衰する振動」と書きましたが、b の正負によっては、減衰とは限らず、発散する振動、b=0 なら振幅一定の調和振動ですね。
No.3
- 回答日時:
No.1&2 です。
「補足」を見ました。式の3行目から4行目への変換は、単に「式の変形」をしてるだけで、結果は何も変わりません。
極端に言えば「三角関数の加法定理を使って、みかけの形を変えている」だけです。結果は「振幅が減衰する振動」を示しています。
そこでは、b がどのような意味を持ち、ω がどのような意味を持ち、それを変換した定数 A や Φ がどのような意味を持つのか、ということに依存します。
それは、最初に示された →r が「物理的に」「現象として」何なのか、ということにも依存します。
上に書いたように、y 方向には「減衰振動する加速度」ということです。(下記の例では「変位」が減衰する振動ですが、(7)式から(8)式への変換が上で示されたものと同じ)
↓ 減衰振動
http://physics.thick.jp/Physical_Mathematics/Sec …
No.2
- 回答日時:
No.1
- 回答日時:
「微分」は理解していますか?
単純に微分すればよいだけです。y は「合成関数の微分」を使います。
vx = d(rx)/dt = -aω*sin(ωt)
vy = d(ry)/dt = b*exp(bt)*sin(ωt) + ω*exp(bt)*cos(ωt)
vz = d(vz)/dt = a + b
ax = d(vx)/dt = -aω^2 *cos(ωt)
ay = b^2 *exp(bt)*sin(ωt) + bω*exp(bt)*cos(ωt) + bω*exp(bt)*cos(ωt) - ω^2 *exp(bt)*sin(ωt)
= (b^2 - ω^2)exp(bt)*sin(ωt) + 2bω*exp(bt)*cos(ωt)
az = 0
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 物理学 力学の微分の質問です。 答えを教えてください。至急です。 問題1ある軸の上を並進運動している物体の位 2 2023/01/31 15:10
- 物理学 xy平面上を運動する物体の位置がr=(rcosωt、rsinωt)と表される時の速度と速さ、加速度と 3 2023/06/26 10:02
- 物理学 力学の問題です。質量m1、速度v1の物体Aと質量m2、速度v2の物体Bがx軸上を等速直線運動していて 2 2022/12/24 13:26
- 物理学 物理学に詳しい方に質問です。 惑星の軌道の関係式を見つけたのですが、当たり前でしょうか。もうすでに発 5 2023/04/15 00:02
- 高校 物理の問題です。 2 2022/07/10 19:00
- 物理学 割と至急お願いします。力学の問題です。 3 2022/12/09 08:45
- 物理学 物理基礎です。 質量0.90kgの物体Aを傾きの角θの滑らかな斜面上に置く。物体Aに軽くて伸びないひ 2 2022/07/05 05:38
- 物理学 x軸上を運動する質量2 kgの物体がある。この物体は,時刻tにx(t)の位置にいて速度v(t)で動い 2 2022/07/17 14:49
- 物理学 xy平面上を運動する物体Aがある。この物体の時刻tにおける位置ベクトルra(t)がra(t)=p + 1 2022/05/23 21:39
- 物理学 xy平面上を運動する物体Aがある。この物体の時刻tにおける位置ベクトルra(t)がra(t)=p + 2 2022/05/22 14:00
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
応答倍率について
-
物理の問題です! 半径 R の円...
-
写真の図の問題で、t<0では、ス...
-
回転運動の粘性抵抗の測定
-
y=Asin(2π/ω)tの式ですが、ある...
-
電気回路
-
周波数スペクトル図の、マイナ...
-
助力を得る回転体から得られる...
-
物理の回路の問題です (2)の一...
-
電磁気学、平面電磁波の問題
-
ヨーヨー
-
力学の問題です
-
半径がr[m]のタイヤが角速度ω[r...
-
交流回路でjは、なぜ数字の前...
-
1.027の求め方について教えて下...
-
画像の交流回路の位相角につい...
-
(1)秒針の角速度の大きさω(ω>0)...
-
角振動数
-
等速円運動での張力について
-
太陽の赤緯の求め方教えてくだ...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報
ちなみに答えはこんな感じです。