以下、回答途中まで
(1)だけ
z[1]=cosθ+i*sinθより
z[2]=cos(θ+π/2)+i*sin(θ+π/2)
z[3]=cos(θ+π)+i*sin(θ+π)
z[4]=cos(θ+3π/2)+i*sin(θ+3π/2)=cos(θ-π/2)+i*sin(θ-π/2)
z[1]^k=cos(kθ)+i*sin(kθ)
z[2]^k=cos(kθ+kπ/2)+i*sin(kθ+kπ/2)
z[3]^k=cos(kθ+kπ)+i*sin(kθ+kπ)
z[4]^k=cos(kθ-kπ/2)+i*sin(kθ-kπ/2)
以下問題
https://imgur.com/a/rxyXcOJ
A 回答 (3件)
- 最新から表示
- 回答順に表示
No.3
- 回答日時:
<n乗すれば偏角n倍を使いました>
えぇ、えぇそれはわかります、
もちろんぼくもそうしています。
あなたがまちがっているというわけではなく
θ=0 としたほうが問題点が見えやすいのではないかという
提案です。
No.2
- 回答日時:
あなたはθ=π/2 としているが
ぼくにはθ=0、つまり
z1=cos0+isin0、z2=cos(π/2)+isin(π/2)
z3=cos(π)+isin(π) z4=cos(-π/2)+isin(-π/2)
とすればドモアブル定理より
kが3以上の奇数のとき、すべて相異なる、
kが4の倍数のときすべて相等しい、
がすぐわかると思うんですがいかが?
No.1
- 回答日時:
あってます
原点を中心とし
半径1の円に内接する正方形z1z2z3z4がある
(1)
z1の偏角をθとして
z1^k,z2^k,z3^k,z4^k
を極形式で表せ
z1^k=e^{ikθ}
z2^k=e^{ik(θ+π/2)}
z3^k=e^{ik(θ+π)}
z4^k=e^{ik(θ-π/2)}
(2)
z1^k,z2^k,z3^k,z4^k
のうちで
相異なるものは何個あるか
k=2,3,4,5,100の各場合について
k=2の場合
z1^2=e^{i2θ}
z2^2=e^{i(2θ+π)}=-e^{i2θ}
z3^2=e^{i(2θ+2π)}=e^{i2θ}
z4^2=e^{i(2θ-π)}=-e^{i2θ}
e^{i2θ}
-e^{i2θ}
の2個
k=3の場合
z1^3=e^{i3θ}
z2^3=e^{i(3θ+3π/2)}=e^{i(3θ-π/2)}
z3^3=e^{i(3θ+3π)}=-e^{i3θ}
z4^3=e^{i(3θ-3π/2)}=e^{i(3θ+π/2)}
の4個
k=4の場合
z1^4=e^{i4θ}
z2^4=e^{i(4θ+2π)}=e^{i4θ}
z3^4=e^{i(4θ+4π)}=e^{i4θ}
z4^4=e^{i(4θ-2π)}=e^{i4θ}
e^{i4θ}
の1個
k=5の場合
z1^5=e^{i5θ}
z2^5=e^{i(5θ+5π/2)}=e^{i(5θ+π/2)}
z3^5=e^{i(5θ+5π)}=-e^{i5θ}
z4^5=e^{i(5θ-5π/2)}=e^{i(5θ-π/2)}
の4個
k=100の場合
z1^100=e^{i100θ}
z2^100=e^{i(100θ+50π)}=e^{i100θ}
z3^100=e^{i(100θ+100π)}=e^{i100θ}
z4^100=e^{i(100θ-50π)}=e^{i100θ}
e^{i100θ}
の1個
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 ∮{cos(x/2)+sin(x/2)}dx =2sin(x/2)-2cos(x/2)+C =2√2 3 2023/10/05 01:49
- 数学 高校生です。 この問題が解説がないため合ってるか分かりません。 この回答であってますか? 回答 g( 3 2023/01/24 14:05
- 数学 数学II この問題の②について cos(θ+5π/3)=sin{(θ+5π/3)+π/2}となってい 6 2024/05/21 19:48
- 数学 高校生です。 この問題の解説がなくてこの解き方で合っているでしょうか? g(x,y)=0のとき x^ 2 2023/01/25 17:28
- 数学 級数の係数を求める 3 2024/05/22 07:06
- 物理学 (1)秒針の角速度の大きさω(ω>0)を計算しなさい 単位はrad/s、πはそのまま残すこと (2) 3 2023/05/01 12:58
- 数学 f(θ) = (2a・cosθ) / ( cos^2(θ)+a^2・sin^2(θ) ) について 2 2024/08/11 13:17
- 数学 複素関数で分からない問題があります。 ∫[0->π]1/(1+sin^2x)dx という積分を考える 5 2022/12/24 22:14
- 数学 難しいのでゆっくりよんでください。 5 2024/06/03 11:04
- 数学 マクローリン展開を簡単にする方法を教えてください 2 2023/07/10 16:15
このQ&Aを見た人はこんなQ&Aも見ています
-
【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
【お題】 ・存在しそうで存在しないモノマネ芸人の名前を教えてください
-
大人になっても苦手な食べ物、ありますか?
大人になっても、我慢してもどうしても食べれないほど苦手なものってありますよね。 あなたにとっての今でもどうしても苦手なものはなんですか?
-
「これはヤバかったな」という遅刻エピソード
寝坊だったり、不測の事態だったり、いずれにしても遅刻の思い出はいつ思い出しても冷や汗をかいてしまいますよね。
-
許せない心理テスト
私は「あなたの目の前にケーキがあります。ろうそくは何本刺さっていますか」と言われ「12本」と答えたら「ろうそくの数はあなたが好きな人の数です」と言われ浮気者扱いされたことをいまだに根に持っています。
-
好きな和訳タイトルを教えてください
洋書・洋画の素敵な和訳タイトルをたくさん知りたいです!【例】 『Wuthering Heights』→『嵐が丘』
-
複素数平面 第9日目
数学
-
複素数平面
数学
-
複素数平面 三重大学過去問
数学
-
-
4
(^^)熊本大学素数平面
数学
-
5
京都大学理系 過去問 整数問題
数学
-
6
複素数平面
数学
-
7
整数問題です。
数学
-
8
数学 微分について
数学
-
9
法政大学過去問 複素数平面
数学
-
10
早稲田大学過去問 複素数平面
数学
-
11
複素数平面
数学
-
12
こちらの2024.08.20 18:17と2024.08.31 00:04の2つのf(z)=tan(
数学
-
13
アポロニウス
数学
-
14
方程式 九州大学過去問
数学
-
15
min関数 一橋大学過去問
数学
-
16
n^2+n-4032はどうやって解くんですか? n=-64,63になるらしいですがそんなのどうやって
数学
-
17
11・13y≡5(mod9)がy≡4(mod9)になるのは何故ですか?分かりやすく説明お願いしますm
数学
-
18
一橋大学過去問 整数 素数 かなりの難問だと思います
数学
-
19
これめちゃあやしくないですか???
数学
-
20
千葉大学 整数問題 これまた難問 誰か解ける方はいますか 何卒宜しくお願い致します。
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/12】 急に朝起こしてきた母親に言われた一言とは?
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・好きな「お肉」は?
- ・あなたは何にトキメキますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
√1って|1|もしくは±1ですよね?
-
1²+1²=は何ですか?
-
2+3×5=はどうやってときますか...
-
写真の問題の解説にある「a≦bと...
-
合成関数の微分の証明
-
x^2y-3xy +5y=25Inxを解ける人 ...
-
大学数学の問題です |r=(x,y,z)...
-
整数じゃない数字を教えてください
-
600wで3分ってことは500wで何分...
-
nを2以上の偶数とする。このと...
-
高カカオチョコレート26枚入り...
-
ベクトル
-
aを正の定数とする
-
高校数学についてです。 (1,-1,...
-
すごく変な質問なのですが、分...
-
高校数学についてです。 積分の...
-
時間の計算について 37時間23分...
-
高二 数学 Hi-Prime 数C 31【画...
-
再配分不変(rearrangement inva...
-
こうこうすうがくについてです...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
2024.8.20 18:17にした質問の、...
-
こちらの2024.08.20 18:17と202...
-
2024.10.13 05:04にした質問の2...
-
2024.5.8 08:24の質問の 2024.5...
-
こちらの2024.08.20 18:17と202...
-
積分について
-
2024.10.8 12:12に質問した 202...
-
2024.5.8 08:24にした質問の 20...
-
この問題のときかたをおしえて...
-
2+A=10 3+B=12 A+B=19 これで正...
-
109x-29y=1 の整数解の見つけ方...
-
時計の長針と短針が重なる回数...
-
x>0,y>0→x^x+y^y≧x^y+y^x?
-
2024.8.20 18:17にした質問の20...
-
10のn乗-1でn=1から15,はなぜ17...
-
ミラーか線か
-
複素数平面
-
共テ模試で「切片」と書かれて...
-
数Ⅲの問題が分かりません
-
方程式 九州大学過去問
おすすめ情報
教授
こんにちは
かっこいい考え方ですね
私もいつかそんな考え方ができたらいいかなと思っております
そんな私は座標設定で解いてみました
以下、私の考え方です
ぜひともご指摘ご指導よろしくお願いいたします
画像拡大リンク先
https://imgur.com/a/fTbzKiB
n乗すれば偏角n倍を使いました
画像拡大リンク先
https://imgur.com/a/fTbzKiB