導体の空洞内に荷電導体球がおいてあるときを考えます。
導体球の電荷分布が一様になるのは、空洞の形が同心球
のときだけなんでしょうか?

このQ&Aに関連する最新のQ&A

A 回答 (2件)

検討してみましたが、結論はやはり「空洞が同心球である場合のみ」です。



いま導体内に空洞Vがあるとします。空洞Vの内壁面(閉曲面)をSとします。Sの形状はとりあえず任意とします。
Sの内部に帯電した導体球をおき、その中心を座標の原点にとります。

空洞の内壁面Sの微小要素dSについて考えます。この点から原点までの距離をrとしましょう。

この点での電場を計算すると、まずSの全内壁面に分布している電荷がつくり出す電場の垂直方向成分は0です(Gaussの法則から考えればすぐ分かります)。一方、導体球がつくり出す電場の垂直方向成分は、同様にGaussの法則からQ/4πεr^2 と求められます。Qは導体球の全電荷、εは誘電率です。
問題はこの導体球が作る電場の「向き」ですが、最初に導体球の表面は一様に帯電していると仮定しましたので、電場はどこでも導体球の中心、すなわち原点を向くことになります。

導体の場合、表面近傍では電場は常に表面に対し垂直であることを思い出してください。もし電場が垂直でない成分を有するのなら、その方向にまだ電荷の移動が生じることになるからです。(「電場と等電位線は常に垂直に交わる」と説明してもよいですね)

となりますとdSは至る所で、その点と原点を結んだ線に対し垂直であることが言えます。Sの形状を表す関数を極座標表示の動径r(θ,φ)で表した場合∂r/∂θ=0、∂r/∂φ=0ですから、結局rは定数に限られます。すなわちSは球面であることが必要です。

以上の議論から「中心の導体球が表面に一様に帯電するためには、空洞の内壁面は同心球でなくてはならない」と言えます。

--------
(注意)外を囲む側が導体でない場合は電場Eと壁面微小要素dSの垂直が保証されないため、上記の議論は成立しません。

この回答への補足

失礼しました。
回答の意味をとりちがえておりました。
正しいです。

補足日時:2002/03/02 19:11
    • good
    • 0
この回答へのお礼

ありがとうございます。
導体球の表面で電場が動径方向だから空洞の表面でもそうなっている
という議論は正しくありません。
導体球の表面では電荷が非一様に分布していても、
当然、常に電場が動径方向をむいています。
従って、上の議論では、電荷分布の一様性が本質的に使われていません。

お礼日時:2002/03/02 18:59

その通りだと思います。


対称性を考えれば、荷電導体球と、外の導体球の
中心が一致するときのみ、外の導体球の電荷分布が
一様になります。

また、逆に、中の荷電導体球になんの力も加わっていなければ、
自然と、荷電導体球と外の導体球の中心は一致する配置に
なるはずです。その配置が一番エネルギーが低いので。
    • good
    • 0
この回答へのお礼

ありがとうございます。
ですが、解の存在を質問してるのではなくて、
一意であることを示せるかという質問です。
それから、空洞の形が球であるとは指定していません。

お礼日時:2002/03/02 02:06

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q導体の電子分布 / 空洞のある導体に電荷を置く

こんにちは、二つお伺いします。
絵を用意したのですが、アップして画質が落ちることがよくあるようなので、その場合はご了承下さい。

質問1
導体内部は電場がゼロである、と理解しております。たとえ、導体内部に空洞があっても、空洞での電場もゼロ、そして導体がどんな非対称な形状をしていようともやはり、導体内部、空洞でも電場はゼロと理解しております。これは、導体の自由電子が、そうなるように(導体内部、空洞での電場がゼロとなるように)動き、配置されたがために起こると考えておりますがいかがでしょうか。すると、非対称な形状の場合、あるところでは電子の密度が高く、あるところでは低い、という偏った電子分布になると考えているのですが、正しいでしょうか。

質問2
導体の内部に空洞があり、その空洞内に電荷をおきます。この場合でも、導体内部の電子が動き、最終的には、導体の内部と空洞内の電場がゼロになるのでしょうか。それとも、内部、または空洞内のいずれか、もしくは両方の電場はゼロにはならないのでしょうか。

質問2のきっかけはある問題集の例題です。その内容も添付の絵に示させて頂きました。
内容は、「二つの導体球がある。ひとつは空洞であり、空洞内にもうひとつの小さな導体球がある(二つの球体は中心を共有している)。その中心から8cmの距離にある点Pでの電場が15000 N/C(方向は中心向き)であった。このとき、小さな導体球の総電荷Q1と、大きな導体球の空洞の内壁表面の総電荷量Q2を求めよ。(注意)Q2は、内壁表面の電荷量であって、大きな導体球の総電荷量ではない。」

というものです。この問題を見たときに、まず、質問2にて申し上げた、「導体の空洞では電場は0」という安直に覚えていたものが崩壊しました。どうやら「導体の空洞では電場は0」というのはあくまでその空洞に電荷が無い場合のことのようだと、今では理解しております。

そして、この例題の解答は、次の通りでした。
「導体の空洞では電場は0」にも関わらず、小さな導体球が存在することよって、P点の電場が形成されている。半径8cmのガウス面を考える。すると
電場 = ガウス面内の総電荷量 Q /(ガウス面の面積 4πr^2 x 誘電率ε) ・・・・(1)
よりもとまる、QがQ1となる (ただし、電場の方向から考えて、Q1は負の値)

一方で、「導体の内部の電場は0」である。大きな導体球の内部を通るガウス面を考える。(1)において、電場 = 0を代入すると、このガウス面内の総電荷量は正味ゼロとならなければならない、したがって、Q2はQ1と正負符号逆で絶対値の等しい値、つまり-Q1、となる。

この解答方法が引っかかりました。Q1を求める前半の解説では、小さな導体球によって、空洞内の電場はゼロではなくなっている、としているのにも関わらず、Q2を求める後半の解説では、小さな導体球の影響など触れもせず、「導体内部の電場は0」としてしまっております。なぜ、小さな導体球に影響を受けて、空洞で電場は生じるのに、大きな導体球の内部に電場が生じないのでしょうか。

文章が分かり難いようでしたら、書き直しますゆえ、お知らせ下さい。
どうか宜しくお願い致します。

こんにちは、二つお伺いします。
絵を用意したのですが、アップして画質が落ちることがよくあるようなので、その場合はご了承下さい。

質問1
導体内部は電場がゼロである、と理解しております。たとえ、導体内部に空洞があっても、空洞での電場もゼロ、そして導体がどんな非対称な形状をしていようともやはり、導体内部、空洞でも電場はゼロと理解しております。これは、導体の自由電子が、そうなるように(導体内部、空洞での電場がゼロとなるように)動き、配置されたがために起こると考えておりますがいかがで...続きを読む

Aベストアンサー

質問1

すべてお考えのとおりです。

質問2

このとき,空洞内の電場はゼロになりません。空洞内の電荷を包むようにガウス面を考えれば,そこを内部の電荷に対応する電気力線が通過しているはずですね? それでもなおかつ,導体内部は電場ゼロになるように自由電子が再配置します。したがってこのとき,空洞の内壁に電荷が生じることになります。空洞内電荷をQ>0 とするとそこから出た電気力線は,導体の内壁で終わらなければならないので,空洞の内壁に生じる電荷の合計は-Qになるのです。このあたりは,ガウスの法則の図形的な(電気力線の)イメージを活用することで,計算以前にたちどころに理解されるべきことです。この「イメージ」こそがガウスの法則の「強み」なのですから。

導体球内部が電場ゼロになるのは,静電場では強い要請です。導体球内部にある自由電子の数は,静電誘導によって尽きることはありません。外部電場がいくら強くても,力を受けた電子が移動することによって電荷が偏り,内部は電場ゼロになるのです。今,一瞬内部に電場ゼロでない領域が生じたとします。すると,その領域にある電子は動かされますね? たちどころに電子が動いてその領域は電場ゼロにならざるをえないのです。

質問1

すべてお考えのとおりです。

質問2

このとき,空洞内の電場はゼロになりません。空洞内の電荷を包むようにガウス面を考えれば,そこを内部の電荷に対応する電気力線が通過しているはずですね? それでもなおかつ,導体内部は電場ゼロになるように自由電子が再配置します。したがってこのとき,空洞の内壁に電荷が生じることになります。空洞内電荷をQ>0 とするとそこから出た電気力線は,導体の内壁で終わらなければならないので,空洞の内壁に生じる電荷の合計は-Qになるのです。このあたりは,ガウ...続きを読む


人気Q&Aランキング

おすすめ情報