
No.4ベストアンサー
- 回答日時:
No.1 さんのご回答における代数的な部分を、若干修正します。
与えられた2点を A(a_1, b_1), B(a_2, b_2) とします。
求める円の中心の座標は
(x - a_1)^2 + (y - b_1)^2 = r^2
(x - a_2)^2 + (y - b_2)^2 = r^2
...なる連立方程式の解として求まります。
その解は2組あり、それを P(p_1, q_1), Q(p_2, q_2) とすると、求める円弧の式は
(x - p_1)^2 + (y - q_1)^2 = r^2
(x - p_2)^2 + (y - q_2)^2 = r^2
...の様になるはずです(実際には、これらの各々に、各点P、Qが直線ABに関してどちら側にあるかに関して定まる不等式を連立させることになりますが)。
この回答へのお礼
お礼日時:2006/08/28 08:59
ご回答ありがとうございました。
いろいろやってみましたが、
最初の2式をそれぞれXとYで微分すると、
2つの原点座標が出てきました。
(詳細はよく解っていませんが・・・^^;)
No.3
- 回答日時:
#2で投稿した者です。
(3)の表現が間違っていることに気付きました。
(3)円弧を左周りに作画すると決めましたから
弦の中点から垂線を 、
ベクトルAをベクトル始点で
90度回した方向に長さh伸ばしたのが小円弧中心で
マイナス90度回した方向に長さh伸ばしたのが
大円弧中心です。
この中点から伸びるベクトルをBとします。
やっぱり、変な表現です。
すみません。
No.2
- 回答日時:
たぶん、中学生の数学ではなく、
PCなどで作画するためのプログラムだと思いましたので、
そのように概略をアドバイスします。
円弧は左周りで作画するものとします。
(1)始点を原点として終点のベクトルA(弦)を作ります。
(2)弦の中点を通り円中心点に至る垂線の長さhを求めます。
h=SQRT(R^2-(|A|/)^2)
(3)円弧を左周りに作画すると決めましたから
弦の中点から垂線を 、
ベクトルAを90度回した方向で長さh伸ばしたのが大円弧中心で
マイナス90度回した方向で長さh伸ばしたのが小円弧中心です。
この中点から伸びるベクトルをBとします。
(4)ベクトルAを半分にしたものにベクトルBを加え
始点座標を加えたものが円中心の絶対座標点です。
(5)円中心点から始点へ伸びるベクトルCを作ります。
円中心点から終点へ伸びるベクトルDを作ります。
(6)ベクトルCを適当な量でプラス方向へ回転させて
ベクトルDに到達するまで繰返します。
円中心座標とベクトルCを加えれば打点の絶対座標値です。
平面座標系の回転計算は複素平面を使うほうが便利です。
i(虚数)を乗算すれば90度回転し、
マイナスiを乗算すればマイナス90度回転します。
分かり難い説明ですみません。
方法はまだいろいろあります。
「計算幾何学」と表題がついた本を参照してください。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学について この問題の(2)、点Eが点AからBへ動く時になぜ点A'が 点Cまで弧を書いているのかが
- 球面と接する直線の軌跡が表す領域
- 数学ベクトルに関しての質問
- 線形代数の2次元直交座標系、極座標系についての問題がわからないです。
- 写真(URL)の問題の(1)についてですが、 円c1は 2点を通ると書いてあることから、 2点の座標
- 第4問 座標平面上に3点 A(1, 1),B(1, 5), C(7, 3) を頂点とするABCがある
- ビオサバールの法則で円弧部分から座標(x,0,0)に対する磁束密度を計算したいのですがここで詰まって
- 数学の問題がわかりません。(球の中心の座標を求める問題)
- 軌跡の問題で動点Pの座標を(p,q)とおく場合、Pの関係式を考えた結果p^2+q^2=4となったとし
- 中1数学 比例のグラフの座標の読み取り
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
数学Ⅰ Ⅱ Ⅲ 以外に数学A B が有...
-
解答に「∵ベクトルOA+ベクトル...
-
ベクトル
-
(平面ベクトル) このbベクトル...
-
線形数学です ベクトルの括弧?...
-
アドミタンスのベクトル軌跡に...
-
3つの線分は、同じ点で交わる...
-
線分ABを3:7に外分する点P
-
電力ベクトルを式で表現する。
-
正八角形のベクトル
-
数学Ⅱを教えてください。 次の...
-
ベクトルn=(-1,√3)に垂直で、原...
-
ベクトルの基礎の問題なんですが…
-
数Bについて
-
極座標r→/r = er→
-
ベクトルの誕生背景
-
位置ベクトルについて
-
平面ベクトルの問題です
-
線形代数についての問題がわか...
-
次の中から平行であるベクトル...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
一次独立の証明が終わり、基底...
-
ゼロからベクトル極めるのに何...
-
進研模試でベクトル方程式は出...
-
v:= (x1)|x1、x2 ∈Rベクトル、x...
-
R(√(-2):={x+y√(-2)|x、y ∈Rベ...
-
(5) (-3) a1ベクトル=(-2) 、a2...
-
曲率の求め方
-
数学Ⅰ Ⅱ Ⅲ 以外に数学A B が有...
-
解答に「∵ベクトルOA+ベクトル...
-
線形数学です ベクトルの括弧?...
-
センターのベクトルと、数列は...
-
3次元空間での傾き、切片の求め方
-
ベクトル
-
大きさ、角度を指定した2次元...
-
3つの線分は、同じ点で交わる...
-
rotの計算について
-
写真の問題の赤線部についてで...
-
△OAB において,辺 OA を 1 : 2...
-
電力ベクトルを式で表現する。
-
位置ベクトル
おすすめ情報