∫[x=0~∞]logx/(1+x^2)の広義積分が収束することを確かめよ
という問題がわかりません。
判定法定理とロピタルの定理よりx^1.5logx/(1+x^2)がx=∞で有界であることを示せました。
ですが、x=0のときどうやってもx^λlogx/(1+x^2) (λ<1)が有界であることを示せません。
僕の予想ではλ=0.5となると思うんですがロピタルを使っても有界になりません。
なおこの広義積分は必ず収束します。
誰か教えてください。
おねがいします。
No.1ベストアンサー
- 回答日時:
f(x)=(logx)/(1+x^2)
y=logx
x=e^y
dy/dx=1/x=1/e^y
g(y)=y/(e^{-y}+e^y)
∫f(x)dx=∫g(y)dy
a_n=∫[1~n]f(x)dx
∀ε>0に対して、
∃n0>e^{4/ε}
m>n>n0
n<x<m
S=logn<y<R=logm
|a_m-a_n|
=|∫[n~m]f(x)dx|
=|∫[S~R]g(y)dy|≦|∫[S~R](y/e^y)dy|=|(1+S)/e^S-(1+R)/e^R|≦4/S<ε
↓
∫[1~∞]f(x)dxは収束する
↓
∀ε>0に対して、
∃K>0(L>K→|∫[1~L]f(x)dx-∫[1~∞]f(x)dx|<ε)
0<δ<1/K
y=1/x
x=1/y
dy/dx=-1/x^2=-y^2
0<δ<x<1
1<y<1/δ
↓
∫[δ~1]f(x)dx=-∫[1~1/δ]f(y)dy
↓
|∫[δ~1]f(x)dx+∫[1~∞]f(x)dx|
=|-∫[1~1/δ]f(y)dy+∫[1~∞]f(x)dx|<ε
↓
lim_{c→+0}∫[c~1]f(x)dx=-∫[1~∞]f(x)dx
↓
∫[+0~∞]f(x)dx=0
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 微分積分についての問題がわからないです。 2 2022/08/08 15:16
- 数学 画像の広義積分の収束発散を調べたいのですが、比較判定法によって調べることはできますか? 3 2022/08/31 22:10
- 数学 積分について教えてほしいです。 I=∫[0→1] 1/√(-logx) dx、J=∫[0→1] √( 1 2023/06/11 14:39
- 数学 大学数学の微積分の問題です。 曲線 y^2=x(logx)^2 x>0 y^2=0 x=0 のループ 1 2022/07/05 13:47
- 数学 広義積分の収束条件 4 2023/01/24 10:30
- 数学 複素関数にロピタルの定理を使おうとしている回答者は、複素関数論はおろか微積分学もよく分かっていない、 5 2022/12/28 18:02
- 相続・譲渡・売却 境界確定、これは一般的なやり方ですか? 6 2023/01/24 22:10
- 数学 実数の収束と上限 4 2023/01/20 22:46
- 数学 「f(z)=1/(z^2-1)に関して ローラン展開を使う場合、マクローリン展開を使う場合、テイラー 3 2022/08/27 19:56
- その他(ニュース・社会制度・災害) 日本では、不労所得者は嫌われてる?? ネット掲示板では、不労所得者が叩かれているのを良く見掛けます 2 2022/12/28 20:47
このQ&Aを見た人はこんなQ&Aも見ています
-
10代と話して驚いたこと
先日10代の知り合いと話した際、フロッピーディスクの実物を見たことがない、と言われて驚きました。今後もこういうことが増えてくるのかと思うと不思議な気持ちです。
-
「平成」を感じるもの
「昭和レトロ」に続いて「平成レトロ」なる言葉が流行しています。 皆さんはどのようなモノ・コトに「平成」を感じますか?
-
土曜の昼、学校帰りの昼メシの思い出
週休2日が当たり前の今では懐かしい思い出ですが、昔は土曜日も午前中まで学校や会社がある「半ドン」で、いつもよりちょっと早く家に帰って食べる昼ご飯が、なんだかちょっと特別に感じたものです。
-
プリン+醤油=ウニみたいな組み合わせメニューを教えて!
プリンと醤油を一緒に食べると「ウニ」の味がする! というような意外な組み合わせから、新しい味になる食べ物って色々ありますよね。 あなたがこれまでに試した「組み合わせメニュー」を教えてください。
-
とっておきの「まかない飯」を教えて下さい!
飲食店で働く方だけが食べられる、とっておきの「まかない飯」。 働いてらっしゃる方がSNSなどにアップしているのを見ると、表のメニューには出てこない秘密感もあって、「食べたい!!」と毎回思ってしまいます。
-
不定積分の計算
数学
-
円形電流の作る磁界はアンペールの法則では導けないのでしょうか?
物理学
-
lim{(a^x+b^x)/2}^1/x x→0 (a,b>o) この
数学
-
-
4
広義積分の問題です。。。
数学
-
5
∫1/(x^2+1)^2 の不定積分がわかりません
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~12/2】 国民的アニメ『サザエさん』が打ち切りになった理由を教えてください
- ・ちょっと先の未来クイズ第5問
- ・【お題】ヒーローの謝罪会見
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
掛け算も足し算も同じ値
-
微小量とはいったいなんでしょ...
-
"交わる"と"接する"の定義
-
フーリエ級数について
-
急減少関数に多項式をかけても...
-
数I 2次不等式x²+2x+m(m-4)≧0が...
-
次の等式を満たす関数f(x)を求...
-
逆補間とはなんですか?
-
Gnuplotについて エラーメッセ...
-
数学の記法について。 Wikipedi...
-
なんで(4)なんですけど 積分定...
-
f(x) g(x) とは?
-
数学の洋書を読んでいて分から...
-
x<1の時、e^x <= 1/(1-x) であ...
-
高校数学です。y=|x|+1 は奇...
-
数学の f(f(x))とはどういう意...
-
区分求積法の公式 lim(n→∞)1/nΣ...
-
数学についてです。 任意の3次...
-
大学への数学(東京出版)に書...
-
複素フーリエ級数
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
差分表現とは何でしょうか? 問...
-
f(x) g(x) とは?
-
数学の f(f(x))とはどういう意...
-
"交わる"と"接する"の定義
-
二次関数 必ず通る点について
-
ニュートン法について 初期値
-
次の等式を満たす関数f(x)を求...
-
次の関数の増減を調べよ。 f(x)...
-
f(x)=2x+∮(0~1)(x+t)f(t)dt を...
-
微小量とはいったいなんでしょ...
-
数学II 積分
-
微分について
-
二重積分を使った回転体の体積...
-
三次関数が三重解を持つ条件とは?
-
微分の公式の証明
-
左上図、左下図、右上図、右下...
-
数学の洋書を読んでいて分から...
-
関数 f(x) = e^(2x) につい...
-
どんな式でも偶関数か奇関数の...
-
フーリエ変換できない式ってど...
おすすめ情報