No.3ベストアンサー
- 回答日時:
なぜ、ヒント通りに sin x = (cos x)(tan x) を
1 - (1/3!)x^3 + (1/5!)x^5 - (1/7!)x^7 + (xの9次以上の式)
= { 1 - (1/2!)x^2 + (1/4!)x^4 - (1/6!)x^6 + (xの8次以上の式) }
・{ t1 + (t3/3!)x^3 + (t5/5!)x^5 + (t7/7!)x^7 + (xの9次以上の式) }
と書いて、右辺の括弧を展開してみようと思わないの?
各次の係数を比較すれば、t1,t3,t5,t7 の連立方程式になるでしょう?
No.2
- 回答日時:
ライプニッツの定理を使えばいいと思います。
f(x)=1/cosx について f'(x) f"(x)を計算して、f'(x) 、f"(x)の関係をみて、ライプニッツの定理を利用すれば、テーラー展開が分かると思います。
tanxについても同様の議論で計算できます。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 数学3の、定積分に関する質問です。 ∫上端e^2下端1{dx}/{x}という問題で、[log|x|] 1 2022/06/16 12:00
- 数学 マクローリン展開を簡単にする方法を教えてください 2 2023/07/10 16:15
- 数学 高校数学の問題です。教えてください。 次の連立方程式を解け。 ただし、0<=x<=2π、0<=y<= 4 2022/08/31 18:33
- 数学 ε-δ論法について 3 2023/02/21 14:29
- 数学 三角関数の微分 添付の問題ですが、sinxを微分するとcosxになるので、3(cosx)^2になると 2 2023/01/20 15:50
- 数学 【数学ⅲ】三角関数と合成関数の微分について 4 2022/07/07 21:44
- 数学 0<x<πで-3√2sinx cosx sin(x+π/4)=0を満たすxは どのようにして求めるの 2 2023/06/26 19:47
- 数学 (-∞,∞)上の関数y=y(x)はx<0でy”-4y=e^xを、x>0でy“-4y=e^(-x)co 2 2022/07/29 17:03
- 数学 積分計算を使った漸化式とその極限 4 2023/07/04 15:40
- 数学 数3の微分の質問です 3 2023/05/05 23:22
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
至急です! 数学で証明について...
-
高校の数学です。
-
すべての馬は同色である。
-
合同方程式
-
lim[x→+∞](x^n/e^x)=0 の証明
-
相似比の答え方・・・
-
定理と法則の違い
-
【遊びのピタゴラスイッチはな...
-
線形計画法の相補性定理
-
modを使用した平方根の求め方
-
ほうべき(方巾)の定理について
-
わかりません。回答と解説のほ...
-
マクローリンの展開式より 0<θ<...
-
det(AB)=det(A)+det(B)
-
数学の答案の書き方について 現...
-
(cosx)^(-1)とtanxのテイラー教...
-
フーリエ級数収束定理とリーマ...
-
平均値の性質、ガウスの平均値...
-
ラテン方陣と魔方陣
-
円周角と弦の関係
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
大学の記述入試で外積は使えま...
-
lim[x→+∞](x^n/e^x)=0 の証明
-
至上最難問の数学がとけた
-
パップスギュルダンの定理について
-
【遊びのピタゴラスイッチはな...
-
直角三角形じゃないのに三平方...
-
【線形代数】基底、dimVの求め方
-
定理と法則の違い
-
二次合同式の解き方
-
相似比の答え方・・・
-
至急です! 数学で証明について...
-
すべての馬は同色である。
-
ほうべき(方巾)の定理について
-
ファルコンの定理は解かれまし...
-
二つの円での平行の証明
-
実数の整列化について
-
AとBはn次正方行列とする。 積A...
-
中学2年図形の証明についての質...
-
拡張ユークリッド互除法による...
-
11・13y≡5(mod9)がy≡4(mod9)にな...
おすすめ情報