人に聞けない痔の悩み、これでスッキリ >>

高校物理の問題の滑車の問題です。

定滑車や輪軸に軽い糸を通して2つの物体が繋がれています。
(通常目にする問題の状態です。)

このとき…

糸でつないでいる物体が等加速度運動 

つまり

回転速度が上昇するようなときに


「滑車や輪軸の回転軸周りの力のモーメントがつりあう」のはなぜでしょうか?

そもそも,静止している場合だけでなく,等加速度だったら力のモーメントがつりあっていると考えるのでしょうか?

また,等速で回転している場合は?


不勉強でわかりません。


ご教授よろしくお願いいたします。

A 回答 (3件)

滑車、糸の質量が0ならば糸でつないでいる物体の速度にかかわらず


回転軸周りの力のモーメントは釣合います。

天下り的ですが、回転運動の運動方程式というものがありまして
http://ja.wikipedia.org/wiki/%E6%85%A3%E6%80%A7% …
滑車の質量が0の場合、上記、基本定義式中のI:慣性モーメント(回りにくさ)が0であり、
T:加速トルク(力のモーメントの和)が0になります。
つまり滑車を回す力のモーメントが釣り合うことになります。

実際には質量0の滑車はないですが、質量0に近い滑車ほど
(厳密には慣性モーメントが小さい、つまり軽くて「小さな」滑車ほど)
より力のモーメントの和が0に近い状態になります。
    • good
    • 0
この回答へのお礼

回転運動の運動方程式,大変参考になりました。
そういえば,学生の時に見たような気がします。
改めて勉強になりました。

質量を無視した回転運動している物体は,力のモーメントの和は常に0になりますね。

ご回答ありがとうございました。

お礼日時:2013/01/16 15:56

こう言うと他の人に怒られそうですが、この問題はある種のペテンなんです。


滑車の回転運動を扱おうとすると、今は高校の範囲からはずれている剛体の運動の理解が必要になるので、質量のない滑車というありえない想定をしてごまかしているのですね。

滑車にかかるモーメントが本当につりあっていたら、ご質問のとおり滑車は回りません。滑車がかかっている糸により加速度回転しているなら、右回りと左回りのモーメントには必ず差があります。ですが、滑車の質量を小さくすると、モーメントの差を小さくできます。そして、ぶら下げている重りの質量に比べて滑車の質量が十分に小さくなれば、事実上このモーメントの差は無視してかまわない程度まで小さくなります。なのでこの状態は

右回り、左回りのモーメントが【近似的に等しくなった】

状態と考えるべきで、「つりあっている」と言ってしまうと語弊があります。

ほんとうに

>「滑車や輪軸の回転軸周りの力のモーメントがつりあう」

とどこかに書いてあったのでしょうか?
(近似を省略した)「力のモーメントが等しい」ではないですか?
    • good
    • 0
この回答へのお礼

質量が十分小さいと,右回り左回りのモーメントが「近似的に等しくなった」は,納得です。

ある問題集の解説にでは,「つりあっている」となっていました。

ただ,滑車の質量を無視すると後で気づきました。

ご回答ありがとうございました。

お礼日時:2013/01/16 15:41

>「滑車や輪軸の回転軸周りの力のモーメントがつりあう」のはなぜでしょうか?



これは「滑車の両側の糸の張力による力のモーメントがつりあう」ということですか?

滑車に無視できない質量があるなら、もちろん釣り合わないです。
糸と滑車のすべりや糸の質量なども考慮に入れるともっと複雑になります。

釣り合うというのは 1) 滑車の質量はとても小さい 2) 糸の質量はとても小さい
3) 糸と滑車間の静摩擦は十分に大きい

という仮定では、不釣り合いは無視してよいということです。
    • good
    • 0
この回答へのお礼

「滑車の両側の糸の張力による力のモーメントがつりあう」状態です。

釣り合うには,3つの条件が必要なのですね。確認しましたら,「軽い滑車」「軽い糸」とありました。

ご回答ありがとうございました。

お礼日時:2013/01/16 15:35

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q慣性モーメントと定滑車の問題

半径がa、慣性モーメントがIの定滑車に、質量m1 m2の(m1>m2)の重りが糸でつながっている。糸は滑車を滑らないとして以下の問いに答えよ。

(1)おもりの加速度を求め、摩擦なしで糸が滑車を滑る場合と比べよ
(2) (1)の結果を全角運動量に関する法則から導いてみよ。
(3)最初静止していた状態からm1がxだけ降下したとき、降下前後で系全 体の力学的エネルギーが同じであることを示せ。
という問題があります。(1)は単に加速度を、滑車の縁の速度v=aωを微分して求めたものと、それぞれのおもりの運動方程式から求めたものを比較すればいいのですか?
それと(2)(3)に関してはさっぱりわかりません。系全体とはどういった意味なのか、滑車の運動エネルギーも含まれるのでしょうか?どうか教えてくださいお願いします。

Aベストアンサー

(2)は、滑車の角運動量の変化が、二つの糸による滑車にかかるトルク(m1によるトルク-m2によるトルク)と等しいことを示せばいいのではないでしょうか。

(3)は、滑車の回転による運動エネルギー・おもりの重力による位置エネルギー・おもりの運動エネルギー の合計を考えればいいのではないでしょうか。

Q加速度と角加速度の関係について

速度と角速度の関係は
中心から質点までの距離がr,質点の速度がv,とすると
角速度ω=v/r [rad/s]
になると思うのですが,
加速度と角加速度の関係は
中心から質点までの距離がr,質点の加速度がa,とすると
角速度α=a/r [rad/s^2]
となるのでしょうか?
ご教示よろしくお願い致します。

Aベストアンサー

半径rが定数とすれば、その通りです。
加速度、角加速度はそれぞれ速度、角速度の単位時間の変化量(時間微分)ですので、加速度は「a=dv/dt」、角加速度は「α=dω/dt」と表せます。
同時に、角速度の式「ω=v/r」の両辺を時間で微分すれば「dω/dt=(dv/dt)/r」となり、この式はすなわち「α=a/r」となります。
ただし半径rそのものが時間関数r(t)の場合はこの限りではありません。

Q高校力学 定滑車における糸の張力

こちらは高校三年生です。

糸の張力を考察するときに、「糸の質量を無視する」とあると、運動方程式において糸の重力と加速度×質量の部分が無視できるので糸の張力は糸のどこでも一定だとできるという記述を目にしました。

「ma=T-T'-mg」  →「0=T-T'」 ⇔ 「T=T'」 (糸の質量をm、両端に張力T・T'が働いているケース)

そこで質問二つ質問があります。
(1)定滑車の場合では糸についての運動方程式はどのような形になるのでしょうか? (ここでは、天井に定滑車をつるして糸をかけています)
定滑車と糸の間には垂直抗力が働き、それらを考慮して運動方程式を立てたのですがこの場合でT=T'(両端での張力が等しい)という結果が出せません...

(2)重さの無視できる定滑車に働く合計の張力は2Tであるというのも、運動方程式から導き出せないのでしょうか?このときも糸と滑車の接している面全体に働く垂直抗力を考えると、訳が分からなくなってしまいました。

摩擦については無視していますが、ある時にどうなるのかもよかったら教えてください。.
その他の条件、糸の伸び縮みなどはどの条件をどのように定めれば良いのか分からないのでもしあったらそれも含めて教えてくださると助かります。

もしも、運動方程式とはまた別のアプローチで「張力はどこでも一定」、「滑車には2Tの力が働く」のふたつを証明できるならばそれを教えてくださっても大丈夫です。

冬休みなので先生に会えなくて質問が出来ないので、投稿させていただきました。不足な点がありましたら教えてくださいm(_ _)m

こちらは高校三年生です。

糸の張力を考察するときに、「糸の質量を無視する」とあると、運動方程式において糸の重力と加速度×質量の部分が無視できるので糸の張力は糸のどこでも一定だとできるという記述を目にしました。

「ma=T-T'-mg」  →「0=T-T'」 ⇔ 「T=T'」 (糸の質量をm、両端に張力T・T'が働いているケース)

そこで質問二つ質問があります。
(1)定滑車の場合では糸についての運動方程式はどのような形になるのでしょうか? (ここでは、天井に定滑車をつるして糸をかけています)
定滑車と糸の間に...続きを読む

Aベストアンサー

>摩擦力による回転運動への影響はが滑車の両端の張力による滑車の回転軸のまわりのモーメントによって
>代表されるという意味だと解釈したのですが大丈夫でしょうか?

この文章を読むかぎりはそれでいいと思います。
実際に滑車をまわす力は糸に沿って働く摩擦力なのですが、
問題を解くときはそれは忘れてしまって滑車の両側の張力で考えればいいということです。

>その際に垂直抗力は位置ベクトルと平行なベクトルだからモーメントが0になり回転運動には関与しないということですか?

位置ベクトルを「回転中心と作用点を結ぶベクトル」に書き換えればそのとおりです。
(一般には回転中心が原点にあるとは限らない。)
振り子の運動で糸の張力が振り子運動に寄与しないのと同じです。

>自分は垂直抗力はこの場合では糸が滑車を押しつけている力の事を言っているのですが間違っていますか?

これは半分正しいです。
本質には関係ありませんが、垂直抗力は「糸が滑車を押しつけている力」の反作用です。

ただ、本質的には問題がないので力の理解に少し問題があったようですね。
このご質問では糸の張力を考えていますので、糸に沿って働く力を扱う必要がありました。
なので、この場合に糸に垂直に働く垂直抗力は直接は関係がありません。
(動摩擦や静止最大摩擦のように糸に沿った力が垂直抗力に比例する場合には間接的に関係してくる。)
なのに垂直抗力が出てくるので、どうも読んでいて違和感がありました。

>摩擦力による回転運動への影響はが滑車の両端の張力による滑車の回転軸のまわりのモーメントによって
>代表されるという意味だと解釈したのですが大丈夫でしょうか?

この文章を読むかぎりはそれでいいと思います。
実際に滑車をまわす力は糸に沿って働く摩擦力なのですが、
問題を解くときはそれは忘れてしまって滑車の両側の張力で考えればいいということです。

>その際に垂直抗力は位置ベクトルと平行なベクトルだからモーメントが0になり回転運動には関与しないということですか?

位置ベクトルを「回転...続きを読む

Q角加速度とトルクと慣性モーメントの関係

トルクを慣性モーメントで割ると角加速度が出ると思うのですが
どうして出るのでしょうか?
トルク:N
角加速度:α
慣性モーメント:I
式はN=α・I
単位だけで見ると
N・m = rad/s^2 × kg・m^2
で一見関係が無いように見えますが・・・
感覚的に、軽くて小さなものと重くて平べったいものを同じスピード(加速度)で回すときは
後者の方がかなり力がいるのはわかるのですが・・・
式から関係性が見えません・・・
どなたかご存知の方、詳しい方、ご教示いただけますでしょうか?

Aベストアンサー

単位だけに注目します。

1Nは1kgの質量の物体を1m/s^2で加速させる力の大きさです。
つまり
1N=1kg・m/s^2

つまりトルクの単位は
N・m=kg・m/s^2・m=kg・m^2/s^2
となります。

慣性モーメントと角加速度の積は
kg・m^2・rad/s^2
となりますが、角度の単位radは無次元量(長さを長さでわったものだから)ですので無視できます。つまりこの積は
kg・m^2/s^2
とあらわせることになり、これはトルクの単位と等しいことがわかります。

Q物理の動滑車の問題です。

定滑車の左側に3mの物体、右側に重さの無視できる動滑車がついています。この動滑車の左側にはmの物体、右側には2mの物体がついています。
この場合、3mの物体は運動するのでしょうか?

力が滑車の重さを無視できるなら、運動しないような気がするのですが。
ご教授ください。

Aベストアンサー

3mを手で止めて、右の動滑車を支える力を求めれば良いでしょう。
mと2mを繋ぐロープの張力をT、
ロープを右へ繰り出す加速度をaとすると

ma=T-mg, 2ma=2mg-T
0=4mg-3T
T=(4/3)mg

従って、右の動滑車を支えるカは 2T=(8/3)mg < 3mg

つまり、3mを手で止めない場合は 3mは下へ動くことになります。

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

Q単振り子の運動方程式

重力加速度g、質量m、紐の長さl、空気抵抗無視。

単振り子の運動方程式はこうなりますよね。
mlθ"=-mgsinθ
これがよくわからないのです。
どういう座標系についての運動方程式なのですか?

軌道にそってx軸を定めると
θl=x
mx"=-mgsinθ  軌道に沿った運動方程式?
⇔mlθ"=-mgsinθ  どういう座標系の運動方程式なの?
そしてこれの一般解はどういう風になりますか?
初期条件としてt=0でθ=φとします。

Aベストアンサー

まず座標系についてのお話をします。下の図をご覧下さい。

  y
  ↑
  ・→x
   \
   →\
   θ \
      ●

振子の支点を・、先端に吊るされたおもりを●で表しています。支点の位置をxy座標の原点に取るならば、鉛直からの振れ角をθとして
x= l sinθ  (1)
y= -l cosθ  (2)
であることは既にご承知かと思います。
このように置くこと自体が、(x, y)の直交座標系から(l, θ)の極座標系に移行していることに相当します。ただほとんど自明なことなので「極座標に置き換えて」などとわざわざ断っていないわけです。
極座標系に移行したことで問題の本質はx(t), y(t)の代わりにl(t), θ(t)を求めることに帰着します。大抵の場合はひもは伸び縮みしないと仮定しますのでlについて解く必要はなく、θについてのみ解くことになります。その方程式が
ml(d^2θ/dt^2)= -mg sinθ  (3)
なわけです。

しかしこの方程式は初等関数の範囲では解くことが出来ません。そこで初等物理の範囲ではθが小さい場合に限って問題を考えることにし、
sinθ≒θ  (4)
の近似を行って解きます。このとき(3)は
ml(d^2θ/dt^2) = -mg θ  (5)
となります。これの解き方はいろいろあります。線形微分方程式の理論を知っていれば解は直ちに
θ= C sin{√(g/l) t+α} ←Cは定数  (6)
だと分かります。αはC sinα=φを満たす定数です。
2階の微分方程式ですが初期条件が「t=0でθ=φ」の一つしか与えられていないので、定数が一つ未定のまま残ります(*1)。

愚直に微分方程式を解くのであれば下のようにやります。
l(d^2θ/dt^2)(dθ/dt) = -g θ(dθ/dt)
d/dt {(dθ/dt)^2} = -(g/l) d/dt (θ^2) ←両辺に(dθ/dt)をかけた上で、積の導関数の公式((y^2)'=2y y')を逆に使った
(dθ/dt)^2 = -(g/l) θ^2 +C1 ←C1は積分定数
dθ/dt = √{-(g/l) θ^2 +C1}  (7)
ここでθ=√(l/g)√C1 sinψと変数を変換すると
dθ/dt = √C1√(1-sin^2 ψ)  (8)
を経て
√(l/g)√C1 cosψ dψ = √C1 cosψ dt  (9)
と変形でき、両辺を積分することで
√(l/g) ψ= t+C2 ←C2は積分定数  (10)
を得ます。θの表式に戻すと
θ=√(l/g)√C1 sin{√(l/g) (t+C2)}  (11)
となります。これは本質的に(6)と同じ式です。初期条件「t=0でθ=φ」を代入することで
φ=√(l/g)√C1 sin{√(l/g)C2}  (12)
を得ます。これを使うと(11)からC1, C2のいずれかを消去できます。初期条件がもう一つあれば運動は一意に定まります(脚注参照)。

もちろん、「軌道に沿ってx軸を定める」でも解けます。この場合の運動方程式は
m(d^2 x/dt^2)= -mg sin(x/l)  (13)
となります。本質的に(3)と同じであることは申し上げるまでもなく、同様に解くことができます。

考え方は上記でよいはずですが中間で計算ミスがあるかも知れませんので、ONEONEさんご自身でも確認しながら読んで頂けると幸いです。

*1 もし初期条件が「t=0でθ=φまでおもりを持ち上げて手を放す」という意味であれば、「θの最大値はφ(厳密には|φ|)」という条件が新たに加わるので運動は一意に定まります。この場合はφsinα=φからα=π/2、よってθ=φsin{√(g/l) t+(π/2)}=φcos{√(g/l) t}と求めることができます。

まず座標系についてのお話をします。下の図をご覧下さい。

  y
  ↑
  ・→x
   \
   →\
   θ \
      ●

振子の支点を・、先端に吊るされたおもりを●で表しています。支点の位置をxy座標の原点に取るならば、鉛直からの振れ角をθとして
x= l sinθ  (1)
y= -l cosθ  (2)
であることは既にご承知かと思います。
このように置くこと自体が、(x, y)の直交座標系から(l, θ)の極座標系に移行していることに相当します。ただほとんど自明なことなので「極座標に置き換えて」...続きを読む

Q剛体振り子の周期

剛体振り子の運動方程式 I(θの2回微分)=-Mghθ
から、普通に
周期T=2π√(I/Mgh)
と教科書に書いてあるのですけど、この周期Tはどうやって求めたのでしょう?計算の仕方がわからないので教えてください☆お願いします!
T=2π/ωと、ω=(θの微分)を用いるのはわかるんですけど・・・。

Aベストアンサー

これはθに関する微分方程式を解かなければいけません。
すなわち
dθ^2/dt^2 = -Aθ
(A=Mgh/I)
これは、よく教科書に書いてある形の微分方程式なのですが、解き方をここに書くのは、ちょっと面倒なのでご勘弁ください。

代わりに、方程式から周期を求める簡易な方法を紹介します。

θはtの三角関数になることは、わかっているものとします。

そうすると
θ = a・sin(ωt+c)
tで一回微分すると
dθ/dt = ab・cos(ωt+c)
もう1回tで微分すると
I = dθ^2/dt^2 = -a・ω^2・sin(ωt+c)

これらを当初の方程式に代入すれば
-a・ω^2・sin(ωt+c) = -A・a・sin(ωt+c)
よって
ω=√A=√(Mgh/I)
T=2π/ω=2π√(I/Mgh)

Q金属、半導体の抵抗の温度変化について

金属は温度が高くなると抵抗が大きくなり、半導体は温度が高くなると抵抗が小さくなるということで、理論的にどうしてそうなるのでしょうか。
金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?
半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。
あと自分で調べていたところ「バンド理論」というのを目にしました。
関係があるようでしたらこれも教えて頂くとありがたいです。

Aベストアンサー

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体の中において金属の自由電子に相当するものは、電子とホールです。この2つは電流を担う粒子ですので、「キャリア」(運ぶ人)と言います。
ホールは、半導体物理学においてプラスの電子のように扱われますが、その実体は、電子が欠けた場所のことを表す「穴」のことであって、おとぎ話の登場人物です。
電子の濃度とホールの濃度に違いがあったとしても、一定の温度においては、両者の濃度の積は一定です。
これは、水溶液において、H+ と OH- の濃度の積が一定(10^(-14)mol^2/L^2)であるのと実は同じことなのです。

中性の水溶液の温度が高くなると、H2O が H+ と OH- とに解離しやすくなり、H2O に戻る反応が劣勢になります。
それと同様に、真性半導体においても、温度が上がると電子とホールが発生しやすくなるのに比べて、両者が出合って対消滅する反応が劣勢になるため、両者の濃度の積は増えます。
キャリアが増えるので、電流は流れやすくなります。

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体...続きを読む

Q滑車に掛かる張力(左右の張力は等しい/異なる?

滑車にかかる張力についてお伺いします。

添付の図面をご覧下さい。上段の図において、二つの物体(青)の加速度を求める、という典型的な物理の問題を想定下さい。この場合、「二つの張力Ta, Tbは同じ(Ta = Tb)」として考え、Ma = Ta ….(1)  ma = mg – Tb…(2) と二つの運動方程式を立てて加速度、さらに張力が求まります。

ここで疑問に思いました。

(Q1)これら二つの張力が同じである、ということの、前提条件というか根底は何なのでしょうか。よく、一本の糸だからそれに掛かる力の合力はゼロに
なるのでどこでも張力が等しい、ということを物理の時間に聞いたことがあるのですが、納得しがたくおもっています。と言いますのも、図にありますように、滑車の端部の
糸にもTa、Tbが掛かっているため、糸内では合力はゼロになります。また、他の物理の問題で、添付図の下段のように、滑車の両端の糸に掛かる張力が異なる、という前提条件の問題で、それらの張力を求める、という問題も多々ありますし、むしろ滑車に関わる問題ではそちらの方が主流ではないかと思います。こういった問題を目にして、「どういうことが理由で、滑車の両端の張力が等しい、等しくない、が決まるのか」、を知りたいと思いました(滑車と糸の間の摩擦がゼロ、とか、滑車の質量や慣性モーメントがゼロ、など)。どうかご教示頂ければと思います。

私は滑車と糸の間の摩擦がゼロだと両端の張力が等しい、というように考えているのですが、明確に物理的にしっかりと理由を述べることができずに悩んでおります。

また、ここから新たな疑問となりますが、「糸の間の摩擦がゼロだと両端の張力が等しい」というのは、つまり下段の図で申し上げますと、Tc – Td = f (friction) = 0
ということですが、摩擦がゼロでない場合、Tc = Td = fとして、ここから回転の運動方程式を立てるときに新たな疑問が生じました。

(Q2)
I: 滑車の慣性モーメント
α: 滑車の角加速度
r:滑車の半径
Mf:摩擦によるトルク

としますと、回転の運動方程式は、反時計回りを正とすると、
Iα = rTc – rTd – Mf

となるのでしょうか、

それとも、摩擦によるトルクだけが回転をもたらしていると考え、
Iα = -Mf

でしょうか。

この疑問が生じた理由は、ある滑車に関する問題で、解き方の中に摩擦によるトルクに関する記述はなく、単純に
Iα = rTc – rTd
とされていたからです。

TcとTdが同じでないならば、摩擦があるはずですが、この運動方程式に含まれていません。
なぜなのでしょうか。それとも、、「糸の間の摩擦がゼロだと両端の張力が等しい(摩擦があるからこそ、両端の張力は異なる)」というのは誤りなのでしょうか。

基本的なことと思いますが、物理の問題を解くときに、一体全体、どの問題では、張力はどこも同じと考えるのか、それぞれ異なると考えるのか、どう対処していたらいいのかわからず、困っております。図の上段のような問題は力学の問題でも比較的学び始めの頃に登場し
その際は滑車について触れていないのが、力学の後半になって滑車が登場し、突如張力が両端で異なると、解答で出始めたの
で混乱しております。混乱しているため、整理し切れていない、言葉がおかしい点などあるかと思いますが、もしそのようでしたら、
修正しますので、ご指摘下さいますと幸いです。

どうぞ宜しくお願い致します。

滑車にかかる張力についてお伺いします。

添付の図面をご覧下さい。上段の図において、二つの物体(青)の加速度を求める、という典型的な物理の問題を想定下さい。この場合、「二つの張力Ta, Tbは同じ(Ta = Tb)」として考え、Ma = Ta ….(1)  ma = mg – Tb…(2) と二つの運動方程式を立てて加速度、さらに張力が求まります。

ここで疑問に思いました。

(Q1)これら二つの張力が同じである、ということの、前提条件というか根底は何なのでしょうか。よく、一本の糸だからそれに掛かる力の合力はゼロに
なるの...続きを読む

Aベストアンサー

※ 話が面倒になるので、以下、糸の質量は無視し、糸と滑車は滑らないとします。

>つまり、物理の問題で、「滑車と糸との間には摩擦はないものとする」
>という文言があれば、滑車両端の張力は等しいとして問題を解く

どうもどこかズレているようですが、滑車を考える場合、滑車の機能からして回転しない滑車を考えると言うのはナンセンスです。したがって、滑車と糸との間に摩擦がなければ滑車は回転しないので、「滑車と糸との間には摩擦はないものとする」という文言が入っている出題というのは考えずらいです。(世の中広いので、存在するのかもしれませんが。)このため、普通の出題であれば、滑車の運動を無視するために「軽い滑車」とか「滑車の質量を無視する」などと書いてあるはずです。

さて問題はここからですが、以下ではつりあっている場合を除き、滑車と重りが運動している場合だけに話を限ります。

滑車と糸の間に静止摩擦が働いていると、この静止摩擦は滑車を回転させる仕事をして滑車の角速度をあげ、エネルギーを滑車に与えます。ところが、滑車の慣性モーメントが0であるとすると、いくら回転速度をあげても回転の運動エネルギーは0のままですから、結局は静止摩擦力は仕事をしない、つまりは、滑車と糸の間の静止摩擦力は0であるという結論になってしまいます。しかし摩擦力が0では滑車は回りません。これは妙ですね。

なので、この場合、慣性モーメントが厳密に0と考えてはいけないのです。慣性モーメントは非常に小さい値で、ごくわずかの摩擦力が滑車と糸の間に働いている。それでも慣性モーメントが非常に小さいために、ごくわずかの摩擦力でも有限の大きさの角速度が得られている、ということです。この場合、糸の張力も左右でごくわずか異なっています。

しかしながら、これらの量がごくごく小さい値のものであれば、0と近似しても大過ないでしょう。こう考えて解いているのが「軽い滑車」とか「滑車の質量を無視する」という問題で、結果として出てくる両側の糸の張力が等しいとか、左右の重りだけで力学的エネルギーが保存するとかいうのは、これらの微少量を除いた近似の結果です。

発端になったのはこのQAのようですが、

http://oshiete.goo.ne.jp/qa/7353908.html

ここでは質量を無視した滑車で重りだけでは力学的エネルギーが保存しないので摩擦だということになっています。しかし、滑車と糸の静止摩擦の場合、その仕事は滑車の回転の運動エネルギーに転換されるだけなので、慣性モーメントが無視されるこの場合は不適当です。この場合の考えうる摩擦は、糸が滑ることによって生じる動摩擦か、軸の回転に伴う摩擦です。

※ 話が面倒になるので、以下、糸の質量は無視し、糸と滑車は滑らないとします。

>つまり、物理の問題で、「滑車と糸との間には摩擦はないものとする」
>という文言があれば、滑車両端の張力は等しいとして問題を解く

どうもどこかズレているようですが、滑車を考える場合、滑車の機能からして回転しない滑車を考えると言うのはナンセンスです。したがって、滑車と糸との間に摩擦がなければ滑車は回転しないので、「滑車と糸との間には摩擦はないものとする」という文言が入っている出題というのは考えずらい...続きを読む


人気Q&Aランキング