No.1ベストアンサー
- 回答日時:
とりあえず、左辺を整理しちゃえば?
倍角公式を使って
sin(θ)/(1-cos(θ)) = cot(θ/2)
から、
arctan(sin(πx)/(1-cos(πx))) = π/2 - πx/2.
これをフーリエ級数展開すればいい。
よく例題にある、三角波ですね。
大変わかりやすく、かつご丁寧にありがとうございます。
答えがいただけなかったら、さらに5時間以上無駄な計算を行い
答えにたどり着けなかったと思います。
今後はalice 44さんのように困っている人を助けるとこができるように
勉強に励んでいこうと思います。
本当にありがとうございました。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 θ=π/2 のまわりでの f(θ)=sinθ/cosθのローラン展開に関して 以外の「」の解答を頂き 13 2022/11/11 09:45
- 工学 以前、線形代数からフーリエ級数展開を導く上で 式v=(v, e1)e1+(v, e2)e2+…+(v 6 2022/06/29 17:24
- 数学 フーリエ級数展開の問題 1 2022/11/04 10:57
- 数学 過去にしてきた質問に対する解答に関して質問が以下の1〜7に関して解答を頂きたく思います。 時間のある 34 2022/07/09 21:52
- 物理学 フーリエ変換の振幅について 1 2022/09/04 08:56
- 数学 1. 「f(z)=tan(z) の 0<|z-π/2|<π でのローラン展開は f(z)=tan(z 1 2022/07/20 21:56
- 数学 【完全微分方程式⠀】 分数で分母が0になり定義できない場合、分母を仮にtと置いてそれを極限t→0とし 1 2022/05/06 14:43
- 数学 「f(z)=1/(z^2-1)に関して ローラン展開を使う場合、マクローリン展開を使う場合、テイラー 3 2022/08/27 19:56
- 化学 化学のエンタルピ変化を求め方について ある例題では各物質のモール数を換算して計算することもあり、ある 1 2022/06/20 23:22
- その他(お金・保険・資産運用) 至急!【Wolt】各メニューの価格設定の簡単な計算方法 3 2023/03/05 11:58
このQ&Aを見た人はこんなQ&Aも見ています
-
10代と話して驚いたこと
先日10代の知り合いと話した際、フロッピーディスクの実物を見たことがない、と言われて驚きました。今後もこういうことが増えてくるのかと思うと不思議な気持ちです。
-
「平成」を感じるもの
「昭和レトロ」に続いて「平成レトロ」なる言葉が流行しています。 皆さんはどのようなモノ・コトに「平成」を感じますか?
-
「覚え間違い」を教えてください!
私はかなり長いこと「大団円」ということばを、たくさんの団員が祝ってくれるイメージで「大円団」だと間違えて覚えていました。
-
集合写真、どこに映る?
あなたが集合写真を撮られるとき、画角のどのあたりにいることが多いですか? 私は振り返ってみると右の端にいることが多い気がします。
-
冬の健康法を教えて!
温度変化が大きくなり、風邪をひきやすいこれからの季節。 どんなことに気をつけていますか?
-
双極子モーメントの鏡像電荷に関して
物理学
-
電気磁気学で抵抗
物理学
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・【穴埋めお題】恐竜の新説
- ・我がまちの「給食」自慢を聞かせてっ!
- ・冬の健康法を教えて!
- ・一番好きな「クリスマスソング」は?
- ・集合写真、どこに映る?
- ・自分の通っていた小学校のあるある
- ・フォントについて教えてください!
- ・【大喜利】【投稿~12/6】 西暦2100年、小学生のなりたい職業ランキング
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・遅刻の「言い訳」選手権
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
離散フーリエ変換(DFT)の実数...
-
日本数学オリンピック2000年予...
-
渦巻きの数式を教えてください...
-
積分 1/sin^3x 問題
-
教えてください
-
場合分けがわからない…(高校・...
-
0≦θ≦2πのとき、sin2θ+cosθ=0の...
-
Z=f(x,y) x=rcosθ y=rsinθで
-
最大値・最小値を求める問題に...
-
高校数学、図形量の最大最小問題
-
数学得意な方! cos240度=cos(...
-
円環の体積 断面積が半円の内側...
-
cos{θ-(3π/2)}が-sinθになるの...
-
正弦波の「長さ」
-
f(x)=√2sinx-√2cosx-sin2x t...
-
高校数学
-
三角関数の「1/3倍角の公式...
-
不定積分です。よろしくお願い...
-
方程式
-
数学
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
0≦θ≦2πのとき、sin2θ+cosθ=0の...
-
cos{θ-(3π/2)}が-sinθになるの...
-
日本数学オリンピック2000年予...
-
f(x)=|sinx| のフーリエ展開が...
-
数学の関数極限の問題を教えて...
-
【至急】数llの三角関数の合成...
-
sinθ―√3cosθ=a(θ+α)の形にした...
-
台形波のフーリエ級数
-
三角関数の「1/3倍角の公式...
-
0≦x<2πの範囲で関数y=-√3sin...
-
正弦波の「長さ」
-
積分 1/sin^3x 問題
-
ベクトル場の面積分に関してです
-
三角関数
-
数学について質問です。 nを正...
-
数学の質問ですがよろしくお願...
-
離散フーリエ変換(DFT)の実数...
-
なんで4分の7πではなく −4分のπ...
-
楕円の問題です^^
-
数学が得意な人に質問です。こ...
おすすめ情報