
No.3ベストアンサー
- 回答日時:
多分#2の回答にあるベクトルの外積を使った例が求めているものでしょう。
でもこれは数の意味、掛け算の意味に変更が生じています。
「2乗」という言葉もそのままでは意味を持ちません。
二乗というのは演算の規則が指定されない限り決まらないものです。
その指定を省略したのであれば演算の内容は通常の掛け算の意味になりますから「0」以外に当てはまる数は存在しません。
数としてベクトルを考えたとします。これは数の意味が拡張されています。でもまあ、数字の組も数字と同じように扱うことができるということが高校でも出てくると思いますので認めてもいいでしょう。でも演算の規則については話が別です。
数a、bから数c作る規則が演算です。
a(*)b=c
と書くことにします。
「a=bのときcはaの二乗と呼ぶことにする」と「二乗」を定義することにします。
この二乗の内容は演算の規則(*)によって変わります。
(*)を通常の足し算だと考えればc=2aが二乗です。
通常の掛け算であればc=a^2です。
通常の足し算も掛け算もa(*)b=b(*)aです。演算は数の入れ替えに対して対称になっています。
ではa(*)b=-b(*)aが成り立つような演算で作られた数字の集合はどういう構造を持つのでしょう。
この場合a(*)a=0になります。
問いになるのは「二乗が0になるような数字は?」ではありません。「二乗が0になるような演算は?」、または「二乗が0になるような演算で作られた数字の集合の構造は?」が問いになるのです。
高校生に「xxxx数」という数があるというようなイメージでの問題を出すのは適当ではありません。出題者の知ったかぶりであいまいな表現が使われているのでしょう。
wikipediaで「グラスマン」を引くと「外積代数」とか「グラスマン代数」が出てきます。「グラスマン数」という言葉は出てきていますが説明はありません。
外積代数というのは(*)として外積を使って作られた代数構造の名前です。
外微分形式で書かれた解析力学とか相対性理論という本が出ています。外積代数の構造を微分形式の中に持ち込んでいます。それによってベクトル空間での表現をテンソル空間での表現に拡張しています。
No.2
- 回答日時:
戦闘機グラマンじゃなくて、グラスマン数でしょ。
たとえば3次元ベクトルを「数」だと思って、外積(×)を「掛け算」だと思えば、
a×b = -b×a
である。なので、a=bの場合には
a×a = -a×a
ってことは、
2 a×a = a×a + a×a = a×a + (-a×a) = 0 (ただし、最後の0は3次元の零ベクトルの意味。)
だから、「(aは)0(ベクトル)でないのに、二乗(a×a)して0(ベクトル)になる」というわけ。
回答ありがとうございました。
板書するなり、プリントをくれるなりしないと、大変です。
ベストアンサーは、先に回答してくださったstomachman様にいたします。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
今、見られている記事はコレ!
-
隣の枝がはみ出してきたら切ってもいい?最もやってはいけないことは?
「隣の木が越境してきて困るが、勝手に切ってはいけないと聞くし…」そう思っている方も多いだろう。実は、2023年4月1日に民法が改正され、この「越境枝」のルールが大きく変わった。 教えて!gooでも「境界から出て...
-
弁護士が解説!あなたの声を行政に届ける「パブリックコメント」制度のすべて
社会に対する意見や不満、疑問。それを発信する場所は、SNSやブログ、そしてニュースサイトのコメント欄など多岐にわたる。教えて!gooでも「ヤフコメ民について」というタイトルのトピックがあり、この投稿の通り、...
-
弁護士が語る「合法と違法を分けるオンラインカジノのシンプルな線引き」
「お金を賭けたら違法です」ーーこう答えたのは富士見坂法律事務所の井上義之弁護士。オンラインカジノが違法となるかどうかの基準は、このように非常にシンプルである。しかし2025年にはいって、違法賭博事件が相次...
-
釣りと密漁の違いは?知らなかったでは済まされない?事前にできることは?
知らなかったでは済まされないのが法律の世界であるが、全てを知ってから何かをするには少々手間がかかるし、最悪始めることすらできずに終わってしまうこともあり得る。教えてgooでも「釣りと密漁の境目はどこです...
-
カスハラとクレームの違いは?カスハラの法的責任は?企業がとるべき対応は?
東京都が、客からの迷惑行為などを称した「カスタマーハラスメント」、いわゆる「カスハラ」の防止を目的とした条例を、全国で初めて成立させた。条例に罰則はなく、2025年4月1日から施行される。 この動きは自治体...
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
電荷と電束、磁荷と磁束について
-
モーメントの符号
-
grad(1/r)を求める問題で
-
ベクトル関数の概略を図示せよ...
-
基本ベクトルと単位ベクトルの...
-
xy平面上を運動する物体Aがある...
-
風向の平均処理
-
角速度ベクトルにつきまして
-
加速度ベクトルが単位接ベクト...
-
ダイヤモンドの構造因子
-
三相交流の仕組みが調べても理...
-
衝突時にaがbから受けた力積の...
-
回折の条件 散乱ベクトルと逆...
-
運動量と力積の関係
-
電流 磁界
-
なぜ、θが微小なとき、tanθ≒θと...
-
東急やJRの振り子式電車の技術...
-
REVERSE(逆転)の反対語は何に...
-
ロケットの燃焼室と重心の関係
-
Power Point へ挿入した図が回...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
ベクトル関数の概略を図示せよ...
-
重心と質量中心の違いについて
-
波数の意味と波数ベクトル
-
三相交流の仕組みが調べても理...
-
ベクトルの太文字書きについて...
-
基本ベクトルと単位ベクトルの...
-
角運動量ベクトルL=mr^2ベクト...
-
ブリュアンゾーンの物理的な意味
-
ミラー指数:面間隔dを求める式...
-
角速度のベクトルの方向は何故...
-
ダイヤモンドの構造因子
-
RL,RC並列回路のベクトル軌跡
-
モーメントの符号
-
単位ベクトルi,j,k と ベクト...
-
連続の式の極(円筒)座標変換(2...
-
ラウエ条件とブラッグ条件
-
角運動量の方向って何ですか?
-
ベクトルを2乗表記 (v↑)^2 につ...
-
力のモーメントのつりあいで 鉛...
-
物理に出てくる図を描くソフト...
おすすめ情報