No.1ベストアンサー
- 回答日時:
それは
∫{f(x)g(x)}’dx=f(x)g(x)
という意味ではなくて、右辺の2項目に
∫f’(x)g(x)dx
という不定積分が残ったままだから積分定数の帳尻は合ってるんです。
奇妙にみえるかもしれませんが、1行目の∫f’(x)g(x)dxの中にある積分定数と2行目の∫f’(x)g(x)dxの中にある積分定数は同じとは限らないということ。
見た目が同じなのに中身が違うって奇妙だと思いませんか?
不定積分を使って表現されたその本の書き方は上で説明したようにあまり好ましくないので、定積分での形を覚えるようにしましょう。
No.3
- 回答日時:
>なんで画像のように積分定数:C無しで∫{f(x)g(x)}’dx=f(x)g(x)が成り立っているんですか?
先ほどのご質問で、何を疑問に思われたのか、ようやく分かったような気がします。以下、ちょっとややこしいのですが、ご容赦ください。
画像に見えている部分にちょっと番号を振って書きだすと、
∫f(x)g'(x)
=∫{f(x)g(x)}'dx - ∫f'(x)g(x)dx ―(1)
=f(x)g(x) - ∫f'(x)g(x)dx ―(2)
ですね。
ちょっと分かりにくいかもしれませんが、この式から分かるのは、「∫{f(x)g(x)}'dx - ∫f'(x)g(x)dx」と「f(x)g(x) - ∫f'(x)g(x)dx」が等しいということは確かですが、「∫{f(x)g(x)}'dx」と「f(x)g(x)」が等しいことは保証していません。
しかし、「(1)の∫f'(x)g(x)dxと、(2)の∫f'(x)g(x)dxは同じなんだから」という感じがします。確かにそうです。「∫f'(x)g(x)dx=∫f'(x)g(x)dx」でないなんてことはあり得ません。
そうではありながら、∫f'(x)g(x)dxは不定積分ですから、計算すれば積分定数が出てきます。そして、積分定数はどんな値でもよいのでした。(1)の∫{f(x)g(x)}'dxも不定積分んですから積分定数が出てきて、
∫{f(x)g(x)}'dx=f(x)g(x)+C
です。すると、(2)は、
=f(x)g(x) + C - ∫f'(x)g(x)dx ―(2')
であるべきでしょう。ところが、∫f'(x)g(x)dxは不定積分のまま書いてあります。ということは、ここも積分定数が出てきます。「∫f'(x)g(x)dx=h(x) + C'」のようになるということですね(h(x)は不定積分を計算して出てきた関数だと思ってください)。
ということは、以下のようになるということになります。
f(x)g(x) + C - h(x) - C'
=f(x)g(x) - h(x) + (C - C')
CもC'も積分定数ですから、どういう値でもいい定数なのでした。ということは、C - C'はひとまとめにしてC''とでも書いておけばいいということになります。
さらに、そのC''だってどんな値でもいい定数ですから、は(2)の、まだ計算していない「∫f'(x)g(x)dx」に含まれていると考えてしまってもいいわけです。
そういう風にして、お示しの教科書の数式になります。積分定数を不定積分するごとに増やしていってもいいのですが、不定積分が一つでも式の中に残っていれば、省略してしまうこともできるというわけです。
ありがとうございますっ!
後ろから読むと理解が早かったです。
>不定積分が一つでも式の中に残っていれば、省略してしまうこともできるというわけです。
しっくりきました(^^♪
No.2
- 回答日時:
私見ですけど、本来積分で出てくる x は束縛変数なので消えてしまうはず。
なのに生き残っているのは、
一説に 不定積分 ∫f(x)dx は dF(x)/dt = f(x)
の解集合を表すから、ということらしいです。だから本来 積分定数が付くのが正しい。
ただ定積分を不定積分を使って計算するとき、 F(b)-F(a) で定数部分は消えてしまう運命にあるので、
定数項はわざわざ書かず省略することがあるということのようです。
ありがとうございます。大学レベル?の内容はよく分からないです><
>ただ定積分を不定積分を使って計算するとき、 F(b)-F(a) で定数部分は消えてしまう運命にあるので、
定数項はわざわざ書かず省略することがあるということのようです
ーCはCと表しますが、Cが沢山あるとややこしいから一つにしようとしたという事ですね。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 解析学の問題がわかりません 1 2023/01/12 22:59
- 数学 積分と不等式 2 2023/01/26 21:52
- 数学 解析学の問題がわからず困っています。 2 2023/01/12 23:07
- 数学 【全微分について】 z=f(x,y) の全微分は df=(∂f/∂x)dx+(∂f/∂y)dy と表 1 2023/02/25 05:49
- 数学 テイラー展開について r↑(x+dx,y+dy,f(x+dx,y+dy))を点(x,y,f(x,y) 4 2023/03/08 01:06
- 数学 問 任意の実数a,bと実数関数f(x)に対して ∮(a→b) |f(x)|dx=0ならばf(x)=0 3 2022/07/17 01:30
- 数学 区間[0,1]で連続な関数f(x)について、 ∮[0→π]xf(sinx)dx=π∮[0→π/2]f 2 2023/01/19 14:13
- 数学 f(x,y)=-2y/(x^2+y^2) という関数を不定積分すると、 ∫ -(2y)/(x^2 + 2 2023/06/12 20:25
- 数学 全微分について質問です。 z=f(x,y)のとき df=(∂f/∂x)dx+(∂f/∂y)dy ∂f 5 2023/02/24 05:46
- 数学 修正して頂いた画像を使用させていただき改めて質問させて頂きます。 画像において、直接fとgのx軸の点 9 2022/08/23 19:17
このQ&Aを見た人はこんなQ&Aも見ています
-
それもChatGPT!?と驚いた使用方法を教えてください
仕事やプライベートでも利用が浸透してきたChatGPTですが、こんなときに使うの!!?とびっくりしたり、これは画期的な有効活用だ!とうなった事例があれば教えてください!
-
人生最悪の忘れ物
今までの人生での「最悪の忘れ物」を教えてください。 私の「最悪の忘れ物」は「財布」です。
-
最強の防寒、あったか術を教えてください!
とっても寒がりなのですが、冬に皆さんがされている最強の防寒、あったか術が知りたいです!
-
AIツールの活用方法を教えて
みなさんは普段どのような場面でAIツール(ChatGPTなど)を活用していますか?
-
【選手権お題その2】この漫画の2コマ目を考えてください
サッカーのワンシーンを切り取った1コマ目。果たして2コマ目にはどんな展開になるのか教えてください。
-
不定積分において積分定数を省略して良いと書いてあったのですが、積分定数をcと考えたときに答えにも途中
数学
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・「これいらなくない?」という慣習、教えてください
- ・今から楽しみな予定はありますか?
- ・AIツールの活用方法を教えて
- ・【選手権お題その3】この画像で一言【大喜利】
- ・【お題】逆襲の桃太郎
- ・自分独自の健康法はある?
- ・最強の防寒、あったか術を教えてください!
- ・【大喜利】【投稿~1/9】 忍者がやってるYouTubeが炎上してしまった理由
- ・歳とったな〜〜と思ったことは?
- ・ちょっと先の未来クイズ第6問
- ・モテ期を経験した方いらっしゃいますか?
- ・好きな人を振り向かせるためにしたこと
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
積分で1/x^2 はどうなるのでし...
-
e^-2xの積分
-
∫1/√x dx 積分せよ 教えて下さい
-
積分 Xの-2乗を積分するとどう...
-
∫1/(x^2+1)^2 の不定積分がわ...
-
フーリエ級数の問題で、f(x)は...
-
1/X^2の積分ってlogX^2ですか?
-
【数学Ⅱ・Ⅲ】微分の問題
-
exp(-ax^2)*cosx の証明
-
フーリエ変換の問題について
-
項の右端につく縦棒の意味を教...
-
x/(a^2+x^2)の積分について
-
∫3x/2x+1 dxの計算はどのように...
-
二階微分の数値計算法について
-
2次微分の変数変換
-
重積分の広義積分の問題です。
-
∫e^cos(x) dx の計算
-
階乗を積分計算に直すと?
-
②の左辺は置換積分法によってと...
-
1/(x*(x-1)^(1/2))の積分について
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
積分で1/x^2 はどうなるのでし...
-
e^-2xの積分
-
∫1/(x^2+1)^2 の不定積分がわ...
-
∫1/√x dx 積分せよ 教えて下さい
-
積分 Xの-2乗を積分するとどう...
-
フーリエ級数の問題で、f(x)は...
-
∫e^cos(x) dx の計算
-
x/(a^2+x^2)の積分について
-
項の右端につく縦棒の意味を教...
-
1/X^2の積分ってlogX^2ですか?
-
微積分 dの意味
-
exp(-ax^2)*cosx の証明
-
フーリエ変換の問題について
-
2次微分の変数変換
-
台形の任意の高さにおける上辺...
-
確率密度関数をf(x)=1-|x-1|と...
-
∫r/(a^2+r^2)^3/2drの計算の解...
-
x^2 * exp(x^2) dxの不定積分
-
【数学Ⅱ・Ⅲ】微分の問題
-
数学についてです。 この二重積...
おすすめ情報