No.3ベストアンサー
- 回答日時:
普通に円の式に変形するだけ。
x²+y²+2x-4y+k=0より
(x+1)²+(y-2)²=5-k
半径の2乗が5-kだから0<5-k ∴k<5
No.2
- 回答日時:
ここの回答者はレベルが低いから, 信用しないほうがいいよ.
k < 5 であればよく, 0 < k である必要はない.
これに good をつけているのは, 一体どういう人たち?
No.1
- 回答日時:
x^2+y^2+2x-4y+k=0
x^2+2x+y^2-4y+k=0
x^2+2x+1+y^2-4y+4+k=1+4
(x+1)^2+(y-2)^2=5-k 右辺の円の半径r^2を示す項は正の値となる
kの範囲は 0<k<5
円の中心の座標は(-1,2)
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 第4問 座標平面上に3点 A(1, 1),B(1, 5), C(7, 3) を頂点とするABCがある 2 2022/10/01 14:53
- 数学 この写真の問題の(2)について何ですが、(1)の「2解が共に1より大きい」という時は写真のように、 5 2022/07/22 11:46
- 数学 この問題を極座標にして積分を解いて行くのですが π0:z=2x+2y S:z=x^2+y^2 D:{ 2 2023/04/14 14:01
- 数学 写真(URL)の問題の(1)についてですが、 円c1は 2点を通ると書いてあることから、 2点の座標 5 2023/02/14 19:44
- 数学 数学の問題がわかりません。(球の中心の座標を求める問題) 2 2023/02/14 15:52
- 数学 数学の質問です。三角関数の合成の問題で、最大値を求めるとき、右下の円のような値の範囲から最大値を求め 2 2023/01/09 21:21
- 数学 球面と接する直線の軌跡が表す領域 4 2023/07/30 12:37
- 数学 軌跡の問題で動点Pの座標を(p,q)とおく場合、Pの関係式を考えた結果p^2+q^2=4となったとし 2 2022/04/10 13:37
- 数学 広義積分 3 2022/12/07 12:29
- 数学 この問題が分かりません! 右図の直線①②の式は、y=-x+4①、 y=3/4x+1② である。2つの 3 2022/05/04 22:29
関連するカテゴリからQ&Aを探す
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
直線と辺の違い
-
右の図のように、円周上に8個の...
-
半直線ABって、AとBどっちを直...
-
中点連結定理って別に1/2のと...
-
線分AB上にあり、ABを3:2に分け...
-
次のθについて、sinθcosθtanθの...
-
空間内で P(p,3,p),Q(q,0,0) が...
-
三角形OABにおいて考える。 辺O...
-
線を13等分する方法を教えてく...
-
下の問題を教えてください! 原...
-
問題文「四面体OABCにおいて、△...
-
立方体に内接する球の断面積に...
-
角CAFの大きさを教えてください...
-
ベクトル方程式の問題についてです
-
矢印を省いています。 平面上の...
-
△OABにおいて辺OAを2:3に内分す...
-
二次関数y=x^2-mx-m+3のグラフ...
-
数1aと数2bだとどちらが難しい...
-
放物線y=x^+4と直線y=mxが...
-
ABベクトル=bベクトル-aベク...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
二次関数y=x^2-mx-m+3のグラフ...
-
直線と辺の違い
-
△OABにおいて辺OAを2:3に内分す...
-
x軸の正の向きってどこのこと言...
-
三角形OABにおいて考える。 辺O...
-
2つのベクトルのなす角が0と18...
-
矢印を省いています。 平面上の...
-
108の正の約数の個数とその総和
-
下の問題を教えてください! 原...
-
ペンと定規と方眼紙だけど正三...
-
ABベクトル=bベクトル-aベク...
-
数学Ⅱの領域について x²+y²≦9...
-
数IIの三角関数の問題です。 直...
-
次のθについて、sinθcosθtanθの...
-
点(-2,3)を通り、x軸に垂直...
-
cos二乗αは1-sin二乗αですか?...
-
【問】複素数平面上の3点O(0)、...
-
スイカの分割問題
-
二次関数の問題です。 放物線y...
-
y=√3分の1x+1とのなす角が4分の...
おすすめ情報