No.4ベストアンサー
- 回答日時:
「Y=x²-mx-m+3 のグラフが x 軸の正の部分で 2点で交わる」と云う事は
y=0 の方程式が 正の異なる2つの解がある、と云う事ですね。
つまり、判別式が 正であることと、軸のx 座標が 正 であることと、
y 軸との交点が 正 であることです。
(頂点の y 座標が 負 になる事は、条件には不十分です。)
Y=f(x)=x²-mx-m+3=x²-mx+(3-m) で、
① 判別式=m²-4(3-m)=m²+4m-12=(m+6)(m-2)>0 → m<-6, 2<m 。
② 軸の x 座標は m/2>0 → m>0 。
③ f(0)>0 → -m+3>0 → m<3 。
以上①②③ を全て満足する x の値は、2<m<3 。
No.3
- 回答日時:
y=x²-mx-m+3とx軸の正の部分が異なる2点で交わるということは、どういうことか...
図のような状態になっていることが必要、つまり頂点のx座標が0より大きくて、y座標が0より小さくないといけない、ということです。
y=x²-mx-m+3を平方完成すると
y=x²-mx-m+3
={x-(1/2)m}²-(1/4)m²-m+3
頂点の座標は
{(1/2)m,-(1/4)m²-m+3}です。
先ほど言ったように
(1/2)m>0より
m>0......①
-(1/4)m²-m+3<0より
(m-2)(m+6)>0
m<-6, 2<m.…...②
①②の共通部分をとって
2<m.......答
No.2
- 回答日時:
y=x^2-mx-m+3
最初に判別式を用いて異なる2点で交わる条件を求める
D=m^2+4(m-3)=m^2+4m-12=(m+6)(m-2)>0
m<-6,2<m ①
一応平方完成させて軸の位置を確かめてみる
y=x^2-mx-m+3
=(x^2-2(m/2)x+(m/2)^2)-(m/2)^2-m+3
=(x^2-(m/2))^2-(m/2)^2-m+3
放物線の軸、x=m/2>0 でなければならない ∴m>0 ➁
①と➁から 2<m
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
10代と話して驚いたこと
先日10代の知り合いと話した際、フロッピーディスクの実物を見たことがない、と言われて驚きました。今後もこういうことが増えてくるのかと思うと不思議な気持ちです。
-
一回も披露したことのない豆知識
あなたの「一回も披露したことのない豆知識」を教えてください。 「そうなんだね」と「確かに披露する場所ないね」で評価します。
-
ホテルを選ぶとき、これだけは譲れない条件TOP3は?
ホテルを探す時、予約サイトで希望条件の絞り込みができる便利な世の中。 あなたは宿泊先を決めるとき「これだけは譲れない」と思う条件TOP3を教えてください。
-
【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
【お題】 ・買ったばかりの自転車を分解してひと言
-
架空の映画のネタバレレビュー
映画のCMを見ていると、やたら感動している人が興奮で感想を話していますよね。 思わずストーリーが気になってしまう架空の感動レビューを教えて下さい!
-
y=x^ -2mx + m^ + m -2がx軸の正の部分2点で交わるように定数mの値の範囲を定めよ
高校
-
x^2+y^2=1のとき、x^2-y^2+2xの最大値と最小値を求めよ。 という問題です。解き方がわ
高校
-
【 数Ⅰ 2次関数 】 問題 関数y=mx²+4x+m-3において,yの値が 常に負であるという条件
数学
-
-
4
高1 数1 2次不等式 二次方程式 x^2+mx+m+3=0が実数解を持つように、定数mの値の範囲を
数学
-
5
次の問題を解いてください。 実数x、yが2x-y=5を満たしながら変化するとき、x2乗+y2乗とその
計算機科学
-
6
0.1.2.3.4.5の6個の数字から異なる5個の数字を取って並べて、5桁の整数を作るものとする。次
高校
-
7
高1 数学の問題です
数学
-
8
数学Iで分からない問題があります
数学
-
9
二次不等式について
数学
-
10
数学A A,B,C,D,E,F,G,Hの8文字を無造作に横一列に並べる時、AはBより左で、BはCより
高校
-
11
下の図において、点I は△ABCの内心である。 αを求めよ。(2)と(3)の解き方が分かりません
高校
-
12
次のような△ABCについて、 3辺の長さa、b、cの大小を調べよ。 (1)∠A=50°、∠B=60°
高校
-
13
なぜ、この羅生門の文では下人を「1人の男」と表現しているのでしょうか。
高校
-
14
この数学の問題の解き方を教えてくださいm(_ _)m
数学
-
15
高校数学です 考え方も含め、教えてください 放物線y=x^2-mx-m+3 がある。 (1)この放物
数学
関連するカテゴリからQ&Aを探す
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・10秒目をつむったら…
- ・人生のプチ美学を教えてください!!
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
平面上の3点OABについて線分AB...
-
傾きが1の直線は45°の角度をつ...
-
ベクトルa→,b→において、|a→|=2...
-
二次関数の問題です。 放物線y...
-
2つのベクトルのなす角が0と18...
-
正四面体の内接球の接点は各面...
-
半直線ABって、AとBどっちを直...
-
二次関数y=x^2-mx-m+3のグラフ...
-
問題 xy平面において、6本の直...
-
線分AB上にあり、ABを3:2に分け...
-
ペンと定規と方眼紙だけど正三...
-
ベクトルの問題です...
-
内積って0以上?0より大きい?...
-
108の正の約数の個数とその総和
-
三角形OABにおいて考える。 辺O...
-
△OABにおいて辺OAを2:3に内分す...
-
【問】複素数平面上の3点O(0)、...
-
Bの座標が(6.18)のとき、直線AB...
-
x^2+y^2+2x-4y+k=0が円を表すよ...
-
下の問題を教えてください! 原...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
二次関数y=x^2-mx-m+3のグラフ...
-
直線と辺の違い
-
△OABにおいて辺OAを2:3に内分す...
-
x軸の正の向きってどこのこと言...
-
三角形OABにおいて考える。 辺O...
-
2つのベクトルのなす角が0と18...
-
矢印を省いています。 平面上の...
-
108の正の約数の個数とその総和
-
下の問題を教えてください! 原...
-
ペンと定規と方眼紙だけど正三...
-
ABベクトル=bベクトル-aベク...
-
次のθについて、sinθcosθtanθの...
-
数学Ⅱの領域について x²+y²≦9...
-
数IIの三角関数の問題です。 直...
-
点(-2,3)を通り、x軸に垂直...
-
cos二乗αは1-sin二乗αですか?...
-
【問】複素数平面上の3点O(0)、...
-
スイカの分割問題
-
二次関数の問題です。 放物線y...
-
y=√3分の1x+1とのなす角が4分の...
おすすめ情報