【 数Ⅰ 2次関数 】
問題
関数y=mx²+4x+m-3において,yの値が
常に負であるという条件を満たすよう
に,定数mの値の範囲を求めよ。
私の解答
※補足に貼りました
答え
※写真
私の解答の解き方ではなぜ正しい答えに辿りつけなかったのでしょうか?
また、「解答」には、
「yの値が常に負であるための必要十分条件は m<0かつD<0 である」
と書いてありますが、なぜこうなるのかがわかりません。この部分の上に書いてある解答内容はわからなかったので、
別の言葉に置き換えたり、詳しく説明したりして教えてくださいm(_ _)m
No.1ベストアンサー
- 回答日時:
平方完成形にすれば
y = mx² + 4x + m - 3 ①
= m[x^2 + (4/m)x] + m - 3
= m[x + (2/m)]^2 - (4/m) + m - 3
ここでは、判別式ではなくグラフで考えましょう。
y が常に負であるためには、このグラフは
(a) 上に凸
かつ
(b) 頂点の y 座標が負
である必要がある。
(a) のためには
m < 0 ②
(b) のためには
-(4/m) + m - 3 < 0 ③
②という条件なので、③に m (<0) をかければ不等号の向きが逆転して
-4 + m^2 - 3m > 0
→ m^2 - 3m + 4 > 0
→ (m - 4)(m + 1) > 0
よって
m < -1 または 4 < m
②という条件でこれを満たすのは
m < -1
(終わり)
実は、③という条件は、①のグラフが x 軸との共有点をもたない、つまり
mx² + 4x + m - 3 = 0 は実数解をもたない
ということを表す「判別式」の条件と同じだということが分かりますか?
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 数学 2時間数に関わる問題について教えてください。 x≧1 y≧-1 2x+y=5 であるとき、xy 7 2022/10/29 10:57
- 数学 【 数I 2次方程式 重解 】 問題 2次方程式x²-mx+9=0が重解をもつよう に、定数mの値を 1 2022/07/17 19:43
- 数学 【 数I 2次関数 最大・最小 】 問題:関数y=x²+2x+c (-2≦x≦2)の最大値 が5であ 3 2022/06/19 08:41
- 大学受験 ある大学の数1,Aの過去問なのですが回答に解説がなく困っています。誰か解説をつけて欲しいです(><) 1 2022/11/05 12:57
- 数学 【 数I 2次関数の最大値・最小値 】 問題 関数y=-x²+1 (1≦x≦3)の 最大値と最小値を 2 2022/06/28 17:49
- 数学 【 数I 最大値・最小値 】 問題 2次関数f(x)=-x²-4x+1のa-1≦x≦a+1にお ける 1 2022/07/17 12:56
- 数学 数学1の問題がわかりません。 次の関数において、頂点の座標と、[]内のxの値に対するyの値を求めよ。 3 2023/02/13 00:36
- 数学 【 数学 一次関数 】 問題 f(1)=-7,f(3)=-13を満たす1次関数f(x)を求めよ。 疑 4 2022/10/23 17:50
- 数学 高校数学 初歩的ですが。 数学で、〜〜をみたす○○を求めよ。 と問われた時、 求める〇〇は〜〜の必要 6 2022/03/29 10:10
- 数学 関数f(x)=x^3+ax^2+bx+cとする。このとき、y=f(x)は以下の条件を満たしている。 1 2023/02/11 14:40
このQ&Aを見た人はこんなQ&Aも見ています
-
見学に行くとしたら【天国】と【地獄】どっち?
みなさんは、一度だけ見学に行けるとしたら【天国】と【地獄】どちらに行きたいですか? 理由も聞きたいです。
-
フォントについて教えてください!
みなさんの一番好きなフォントは何ですか? よく使うフォントやこのフォント好きだなあというものをぜひ教えてください!
-
【大喜利】看板の文字を埋めてください
旅行先でほぼ消えかけている看板に出会いました。 何を気を付ければいいのか穴埋めをして教えてください。
-
何歳が一番楽しかった?
自分の人生を振り返ったとき、何歳のころが一番楽しかったですか? 子供の頃でしょうか、それとも大人になってからでしょうか。
-
【穴埋めお題】恐竜の新説
【大喜利】 考古学者が発表した衝撃の新説「恐竜は、意外にもそのほとんどが〇〇〇」 (〇〇〇に入る部分だけを回答して下さい)
-
二次関数y=x^2-mx-m+3のグラフとx軸の正の部分が、異なる2点で交わる時、定数mのあたいの範
高校
-
数学Aで質問です。 赤玉5個と白玉7個の入った袋から、4個の玉を同時に取り出すとき、その中に赤玉が3
数学
-
放物線y=x^2を平行移動したもので、頂点が直線y=2x+1上にあり、点(-1、-2)を通る放物線の
その他(学校・勉強)
-
-
4
確立の問題
数学
-
5
2つの方程式ax^2-3x+a=0,x^2-ax+a^2-3a=0が少なくとも一つが実数解を持つとき
高校
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・2024年に成し遂げたこと
- ・3分あったら何をしますか?
- ・何歳が一番楽しかった?
- ・治せない「クセ」を教えてください
- ・【大喜利】看板の文字を埋めてください
- ・【大喜利】【投稿~12/17】 ありそうだけど絶対に無いことわざ
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・【穴埋めお題】恐竜の新説
- ・我がまちの「給食」自慢を聞かせてっ!
- ・冬の健康法を教えて!
- ・一番好きな「クリスマスソング」は?
- ・集合写真、どこに映る?
- ・自分の通っていた小学校のあるある
- ・フォントについて教えてください!
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
4乗のグラフ
-
10の1.2乗が、なぜ16になるのか...
-
積分の面積を求める問題で 上−...
-
タンジェントとアークタンジェ...
-
ゴンペルツ曲線の式
-
関数のグラフでy'''はなにを意...
-
2点集中荷重片持ち梁について
-
数学
-
(高校数学) 放物線y=(x-2)^2とx...
-
y=1/(1+x^2)
-
グラフの概形を書けという問題...
-
Xについての方程式|x²-1|+x=Kが...
-
増減表について
-
高一の数学の問題
-
写真の(1)についてですが、「4...
-
マクロでグラフの交点を設定する
-
シェーマ図?
-
-b/2aが2次関数の軸?になる理...
-
指数関数と階乗。グラフで表し...
-
グラフを描く問題はどこまで?
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
積分の面積を求める問題で 上−...
-
数3 関数の極限 どういう問題の...
-
4乗のグラフ
-
関数のグラフでy'''はなにを意...
-
数学の質問です。分数関数の分...
-
タンジェントとアークタンジェ...
-
ゴンペルツ曲線の式
-
【 数Ⅰ 2次関数 】 問題 関数y=...
-
「グラフの概形を描け」と「グ...
-
三角関数 y=cos3θのグラフの書...
-
三次関数のグラフ 微分した二次...
-
10の1.2乗が、なぜ16になるのか...
-
増減表について
-
「2次不等式2x²+3x+m+1<0を満た...
-
関数、y=0 などのグラフの...
-
x^2-4x+4>0の解
-
高校二年生になったばかりの者...
-
Xについての方程式|x²-1|+x=Kが...
-
2点集中荷重片持ち梁について
-
半径がXcmである円の面積をYcm2...
おすすめ情報
答え
答え
正しい答え
正しい答え