No.4ベストアンサー
- 回答日時:
Oを位置ベクトルの基準とします
貴方の考えだと、直感的には以下の理由で駄目
Pは基本的にフラフラしている点でその位置が定まっていない
すると、右辺=(→OМ)+t(→МP)は
→МPがどの方向を向いているか確かでなくなり、МPがACと平行であるという担保がないことになる
こうなると、右辺が示すPはACの平行線上に位置しているという保証はない
そして、もう少し詳しく見ていくと
→OP=(→OМ)+t(→МP)…①
↔
(1-t)(→OP)=(1-t)(→OМ)より
①を満たすのは
t=1のとき
または、OP=→OМ、すなわちPとМが一致のとき
となってしまってるので、これでは直線の方程式になってません
幾何学的に、
正解の左辺、→OPは
PがOからどの位置にあるか、を意味してますよね
このPの位置を正解の右辺が説明しているわけです
そして、右辺はまず、→OМベクトルで
Oをスタートして、ベクトルの矢印の先端が点Мに来てます、
(この段階でМを通ると言う条件はクリアされました)
この地点から更に矢印(ベクトル)をつないで矢印の先(=Pの位置)をACと平行な位置に持っていきたいので
今度は、→ACベクトルの登場です
あとは、→ACベクトルの矢印の長さを自在に変えてあげられるようにt(→AC)としてやれば
右辺=(→OМ)+t(→AC)の意味する所は
矢印の先端(点P)がまずМに来て、そこからACに平行にxの距離だけ進んだ位置に来る(xはtの値に左右される)
と言うことになり、
tの値を徐々に変化させれば、矢印の先端(P)の奇跡はМを通りACに平行な直線を描く
この辺りのことを理解してやる事が大切ですよ
No.6
- 回答日時:
↑MP は ↑AC と平行だから
↑MP=t↑AC となる実数tが存在するのです
↓↑MP=↑p-↑m だから
↑p-↑m=t↑AC
↓両辺に↑mを加えると
↑p=↑m+t↑AC
となるのです
--------------------------
AC のところを MP としてしまうと
↑MP は ↑MP と平行だけれども
↑MP=t↑MP となる実数tはt=1しかないのです
だから
AC のところを MP としてはダメ
No.3
- 回答日時:
→p = →m + t(→MP) という立式は何も間違ってないけど...
右辺にも点P が登場してるから、整理すると
→p = →m + t(→p - →m)
= →m + t(→p) - t(→m),
(1 - t)(→p) = (1 - t)(→m).
この式は、 t = 1 または →p = →m であることしか表してない。
t = 1 は元の式に代入すると →p = →p となって
どんな →p に対しても成り立つから、
(t = 1 または →p = →m) ⇔ (→p = →p または →p = →m)
⇔ (真 または →p = →m)
⇔ 真
であって、あなたの式は、単にいつでも成り立ってしまう
成り立つだけで特に意味のない式ということになる。
P の描く直線を表してはいない。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
字面がカッコいい英単語
あなたが思う「字面がカッコいい英単語」を教えてください。
-
フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
あなたが普段思っている「これまだ誰も言ってなかったけど共感されるだろうな」というあるあるを教えてください
-
映画のエンドロール観る派?観ない派?
映画が終わった後、すぐに席を立って帰る方もちらほら見かけます。皆さんはエンドロールの最後まで観ていきますか?
-
海外旅行から帰ってきたら、まず何を食べる?
帰国して1番食べたくなるもの、食べたくなるだろうなと思うもの、皆さんはありますか?
-
天使と悪魔選手権
悪魔がこんなささやきをしていたら、天使のあなたはなんと言って止めますか?
-
√0.25=±0.5である。 これはなぜ正しく無いのですか?
数学
-
a^3+b^3=(a+b)(a^2-ab+b^2)となると思いますが何故こうなるのですか? 理解力低
数学
-
整式 P(x)を(x-1)²で割ったときの余りが4x-5で,x+2で割ったときの余りが 一4である。
数学
-
-
4
数学 算数の通分について 分数を約分するときって 例えば分母が 8と6だったら8×6をして48 だか
数学
-
5
三角関数の変換で納得いかないところがあります
数学
-
6
数学 ある自然数a,b,c,dは互いに素とし、 a/b>c/dという不等式が成り立つなら なぜb/a
数学
-
7
BINGが間違えた、とっても簡単な算数の問題です、これを見て、どう思われますか。
数学
-
8
a, bがa>0, b>0,1/a+2/b=3を満たして変化するとき, (1) abの最小値を求めよ
数学
-
9
こういう積分って
数学
-
10
数学II この問題の②について cos(θ+5π/3)=sin{(θ+5π/3)+π/2}となってい
数学
-
11
命題がわかりません!!
数学
-
12
積分定数どこまで
数学
-
13
数学II θの範囲に制限がないとき、次の不等式を解け。 √3tanθ>1 この答えはπ/6+nπ
数学
-
14
三角不等式
数学
-
15
n 個のサイコロを同時に振る。 ただし、nは正の整数とする。 出た目の数の積が6の倍数となる確率を求
数学
-
16
(2)の問題なのですが、解答には3列目に書かれた数が7m-4、5列目に書かれた数が7n-2と表す、と
数学
-
17
数Ⅲ極限 写真の問題の途中計算がわかりません。 分子を計算するとき1×(3^n+1-1)/2となりま
数学
-
18
どういう発想でこうなると分かるのですか
数学
-
19
他のスレだとだいたいいるのに数学カテには「そんな中学生レヴェルの質問はするな」とかいうへそ曲がりがい
数学
-
20
この問題の解答が(写真) A. a < 0, 0 < a≦ 9/4となるのですが、0 < a≦ 9/
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・街中で見かけて「グッときた人」の思い出
- ・「一気に最後まで読んだ」本、教えて下さい!
- ・幼稚園時代「何組」でしたか?
- ・激凹みから立ち直る方法
- ・1つだけ過去を変えられるとしたら?
- ・【あるあるbot連動企画】あるあるbotに投稿したけど採用されなかったあるある募集
- ・【あるあるbot連動企画】フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
- ・映画のエンドロール観る派?観ない派?
- ・海外旅行から帰ってきたら、まず何を食べる?
- ・誕生日にもらった意外なもの
- ・天使と悪魔選手権
- ・ちょっと先の未来クイズ第2問
- ・【大喜利】【投稿~9/7】 ロボットの住む世界で流行ってる罰ゲームとは?
- ・推しミネラルウォーターはありますか?
- ・都道府県穴埋めゲーム
- ・この人頭いいなと思ったエピソード
- ・準・究極の選択
- ・ゆるやかでぃべーと タイムマシンを破壊すべきか。
- ・歩いた自慢大会
- ・許せない心理テスト
- ・字面がカッコいい英単語
- ・これ何て呼びますか Part2
- ・人生で一番思い出に残ってる靴
- ・ゆるやかでぃべーと すべての高校生はアルバイトをするべきだ。
- ・初めて自分の家と他人の家が違う、と意識した時
- ・単二電池
- ・チョコミントアイス
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
複素数平面での|x+yi|² におい...
-
解答に「∵ベクトルOA+ベクトル...
-
ベクトル
-
三角形の問題です。 △ABCと点P...
-
ベクトルの問題
-
お互いに垂直だが、接触せず距...
-
3つの線分は、同じ点で交わる...
-
ベクトル
-
ベクトル(センター試験の模試)
-
数学Ⅱを教えてください。 次の...
-
数学Ⅰ Ⅱ Ⅲ 以外に数学A B が有...
-
三角形OABにおいて、辺OAを1:2...
-
ベクトルn=(-1,√3)に垂直で、原...
-
ゼロベクトルになる理由を教え...
-
内積の問題で質問です。 Qこの...
-
重心・外心・垂心
-
数Bです。 定点O、Aと動点Pが...
-
共線条件
-
ベクトル
-
ベクトルの読み方
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
解答に「∵ベクトルOA+ベクトル...
-
複素数平面での|x+yi|² におい...
-
図のようにベクトルはOA+ABのよ...
-
位置ベクトルについて
-
数学Ⅰ Ⅱ Ⅲ 以外に数学A B が有...
-
線形数学です ベクトルの括弧?...
-
お互いに垂直だが、接触せず距...
-
3次元空間での傾き、切片の求め方
-
線分ABを3:7に外分する点P
-
3つの線分は、同じ点で交わる...
-
高校数学のベクトルのパラメー...
-
ベクトルの読み方
-
曲率の求め方
-
(平面ベクトル) このbベクトル...
-
何故ベクトルの和の定義は↑AB+↑...
-
ゼロベクトルになる理由を教え...
-
△OAB において,辺 OA を 1 : 2...
-
ベクトルの大きさの最小値
-
正八角形のベクトル
-
アドミタンスのベクトル軌跡に...
おすすめ情報