A 回答 (10件)
- 最新から表示
- 回答順に表示
No.10
- 回答日時:
フーリエ正弦級数展開は奇関数の周期関数に対して行うものです
フーリエ余弦級数展開は偶関数の周期関数に対して行うものです
問題は奇関数の周期関数でも偶関数の周期関数でもないので間違っています
f(x)=sin(3x)のフーリエ正弦級数はsin(3x)そのものです
問題を
f(x)=sin(3x) (0<x≦π/3) であって,f(x+π/3)=f(x) とする
f(x) のフーリエ級数展開を求めよ
とします
No.9
- 回答日時:
フーリエ級数展開は周期関数に対して行うものです
問題は周期関数ではないので間違っています
問題を
f(x)=sin(3x) (0<x≦π/6) であって,f(x+π/6)=f(x) とする
f(x) のフーリエ級数展開を求めよ
とします
No.7
- 回答日時:
周期 π/6 ということで sin3x の先頭部がのこぎり状に
繰り返すということなら、
フーリエ級数展開の公式はこちら
https://manabitimes.jp/math/1156
単純に積分するだけなので
a_n = -1/(48n^2 - 3)
b_n = 4n/(48n^2 - 3)
三角関数の積和の公式を知っていれば瞬殺です。
No.6
- 回答日時:
#2の方の通り
フーリエ級数展開は無限に続く周期関数に対して行うものです
なので
f(x)の周期を指定しなければいけません
f(x)=sin(3x)
の周期は(2π/3)です
f(x)=sin(3x)
のフーリエ級数展開は
sin(3x)
そのもので
フーリエ正弦級数部分はsin(3x)
フーリエ余弦級数部分は0
となります
定義域を
(0≦x<π/6)
としても
f(x)の周期を(2π/3)のまま変更しないのであれば
フーリエ級数展開は
sin(3x)
に変わりはありません
問題が間違っています
No.5
- 回答日時:
←No.2
そこは、
f(x) = sin(3x), x∈(0,π/6] を周期拡張して
基本周期 π/6 - 0 のフーリエ級数に展開する
と忖度してあげてもバチはあたらないと思うよ。
ただし、
フーリエ正弦級数やフーリエ余弦級数は
普通のフーリエ級数展開の結果現れるもので、
別の展開方法があるわけじゃあない
ということは、教えたげたほうがいいかと。
「フーリエ展開とはなんですか?」という段階の人が、
「フーリエ正弦級数とフーリエ余弦級数を教えてください。」
と聞いてることは、状況がかなり謎ではあるけど。
基本周期 T の「フーリエ級数」とは、
(a_0)/2 + Σ[n=1→∞]{ (a_n) cos( (2π/T)(nx) ) + (b_n) sin( (2π/T)(nx) ) }
ただし a_n, b_n はどれも定数
という形の級数のことをいい、
周期 T を持つ関数 f(x) と一致する上記の級数を見つけることを
「f(x) をフーリエ展開する」といいます。
f(x) が偶関数の場合、f(x) のフーリエ級数は b_n が全て =0 になって
cos の項ばかりからなる級数になるため「フーリエ余弦級数」と、
f(x) が奇関数の場合、f(x) のフーリエ級数は a_n が全て =0 になって
sin の項ばかりからなる級数になるため「フーリエ正弦級数」と呼ばれます。
どちらもフーリエ展開の結果であって、
ひとつの f(x) からフーリエ正弦級数とフーリエ余弦級数が
両方作れるわけではありません。
フーリエ展開のやり方は、
a_n = (2/T) ∫[0,T] f(x) cos( (2π/T)(nx) ) dx,
b_n = (2/T) ∫[0,T] f(x) sin( (2π/T)(nx) ) dx
で、各 a_n, b_n を求めればよいです。
なぜそうなるのか?については、
ここに書くには紙面が狭すぎるので、成書を読んだほうがよいです。
No.1
- 回答日時:
f(x) をフーリエ級数展開した結果出てくる級数で
f(x) が奇関数のとき生じるものを「フーリエ正弦級数」、
f(x) が偶関数のとき生じるものを「フーリエ余弦級数」
と言います。
任意の f(x) をフーリエ正弦級数に展開でいたり、
フーリエ余弦級数に展開できたりするわけではありません。
例として、f(x) = sin(3x) は、奇関数ですから、
普通にフーリエ級数に展開すれば
フーリエ正弦級数が出てきます。それだけのことです。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 f(x)=1 (0<x<L) f(x)=x (0<x<L) のフーリエ正弦級数とフーリエ余弦級数の求 1 2022/12/01 17:05
- 数学 f(x)=x (0<x<L) のフーリエ正弦級数とフーリエ余弦級数の求めよという問題が分からないので 3 2022/12/03 14:39
- 数学 f(x)=x+1 (-π<x≦π)のフーリエ級数の複素フーリエ級数を求めよという問題が分からないので 1 2022/12/13 17:30
- 数学 -π<x≦π、f(x)=|sinx|+1 である周期関数f(x)のフーリエ級数を求めよという問題の解 1 2023/02/06 18:20
- 数学 複素フーリエ 2 2024/07/16 23:05
- 数学 -π<x≦π、f(x)=|sinx|+1 である周期関数f(x)のフーリエ級数について、 an=4/ 1 2023/02/10 14:18
- 数学 フーリエ級数係数 2 2023/06/04 14:29
- 物理学 複素フーリエ級数展開からフーリエ変換 1 2023/05/12 16:15
- 数学 f(x)のフーリエ変換をF(ξ) g(x)のフーリエ変換をG(ξ)とする時、 ①f(ax+b)のフー 1 2023/02/06 18:25
- 数学 数学の質問です。 関数f(t)のフーリエ変換をF(ω)=∫[-∞→∞]f(t)exp(-iωt)dt 1 2023/07/29 01:08
このQ&Aを見た人はこんなQ&Aも見ています
-
これまでで一番「情けなかったとき」はいつですか?
これまでの人生で一番「情けない」と感じていたときはいつですか? そこからどう変化していきましたか?
-
一番好きな「クリスマスソング」は?
街に出ればクリスマスソングを聞かない日はないくらい、 いろんな曲がかかっていますよね。 あなたが一番好きな「クリスマスソング」を教えてください!
-
とっておきの手土産を教えて
お呼ばれの時や、ちょっとした頂き物のお礼にと何かと必要なのに 自分のセレクトだとついマンネリ化してしまう手土産。 ¥5,000以内で手土産を用意するとしたらあなたは何を用意しますか??
-
この人頭いいなと思ったエピソード
一緒にいたときに「この人頭いいな」と思ったエピソードを教えてください
-
冬の健康法を教えて!
温度変化が大きくなり、風邪をひきやすいこれからの季節。 どんなことに気をつけていますか?
-
関数 f(x)=sin(3x) (0<x=<π/6)について。 フーリエ余弦級数を導出してください。
数学
-
数学検定準一級を取得している人はどれくらいの数学力が担保されていると思いますか?
数学
-
中高で数学をやる意義は? と聞かれたらみなさんなんて答えます?
数学
-
-
4
写真の問題について質問なのですが、 ①微分方程式というものがよくわかりません。 g(a)=ce^(-
数学
-
5
皆さんが高校数学で、一番感動したテーマは何でしょうか?
数学
-
6
1/z^2 を z=i の周りで展開しなさい。 この問題が分からないです。また複素関数論のいい教科書
数学
-
7
素数発見の新記録 実用面で何か意義があるものでしょうか
数学
-
8
高校数学についてで、帰納法をたとえば数列で使うときにn=kとおいて、kで示したいものが成り立つと仮定
数学
-
9
四角柱の定義の中に「底面が互いに平行である」ことは含まれますか?平行六面体の定義を知る上で必要な知識
数学
-
10
-x²+4x=0 -x²-x+2=0 この2つの方程式の解き方をおしえてください
数学
-
11
高校の微分の問題で、g(x)=x^3-3bx+3b^2のグラフはなぜ画像のようになるのですか? h(
数学
-
12
余弦定理
数学
-
13
f(x)=f(x²)はどんなグラフになりますか?
数学
-
14
50代の母に数Aの問題教えてほしいと冗談で言ったら まじで解いて教えてくれました。しかも分かりやすか
数学
-
15
数学の法則を発見しました
数学
-
16
他のスレだとだいたいいるのに数学カテには「そんな中学生レヴェルの質問はするな」とかいうへそ曲がりがい
数学
-
17
iに絶対値がつくとどうなるのかを教えてください
数学
-
18
√0.25=±0.5である。 これはなぜ正しく無いのですか?
数学
-
19
数学の基礎を固めたい 数学が苦手で数学の基礎を固めたいのですが、黄色チャートと白チャートどっちがいい
数学
-
20
小学生の時(40年前)に、18÷0は解無し、0÷18は0と教わりました。 しかし今は、どちちらの答え
数学
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・【穴埋めお題】恐竜の新説
- ・我がまちの「給食」自慢を聞かせてっ!
- ・冬の健康法を教えて!
- ・一番好きな「クリスマスソング」は?
- ・集合写真、どこに映る?
- ・自分の通っていた小学校のあるある
- ・フォントについて教えてください!
- ・【大喜利】【投稿~12/6】 西暦2100年、小学生のなりたい職業ランキング
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・遅刻の「言い訳」選手権
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
exp(x)の微分が
-
この最後のコメントについて、...
-
小学1年生とか2年生に、「1+1っ...
-
オイラーの公式
-
0⁰再び
-
=って逆も正しくないとダメで...
-
この解法のグラフはどういった...
-
「普通のサイコロ」で連続して4...
-
オイラー線について 三角形ABC...
-
中3数学因数分解について
-
高校数学において(dx/dt)×dt=dx...
-
例えば和算は、タイムマシンを...
-
境界条件u(0、t)=0、u(2、t)=0 初...
-
-x²+4x=0 -x²-x+2=0 こ...
-
熱伝導拡散方程式で ∂u/∂t=k∂^2...
-
x,yが3つの不等式 y≧5/3x+5, y≧...
-
f(x) =√(x ^ 2 + 1) + 2 - x/a...
-
1の100乗、2の100乗、~100の10...
-
定積分 ∫[-1√2→1/√2] {x^2/√(1-...
-
exp[x^2]を定義に従って微分す...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
中高で数学をやる意義は? と聞...
-
f(x)=sin3x (0,π/6]のフーリエ...
-
√1って|1|もしくは±1ですよね?
-
素数発見の新記録 実用面で何か...
-
大学数学の問題です |r=(x,y,z)...
-
矛盾法
-
2+3×5=はどうやってときますか...
-
f(x)=f(x²)はどんなグラフにな...
-
a,bは0でない整数。a²/b³➡a/bを...
-
nを2以上の偶数とする。このと...
-
和の公式
-
ここでいうスカラーとはなにを...
-
600wで3分ってことは500wで何分...
-
整数じゃない数字を教えてください
-
時間の計算について 37時間23分...
-
サイコロの確率の問題です! サ...
-
1²+1²=は何ですか?
-
数学、三角関数の問題です。 原...
-
以下の原稿(プレプリント)の...
-
写真の問題の解説にある「a≦bと...
おすすめ情報
0=<x<π/6ということです。