
ずっと以前、0⁰=1について質問させてもらいましたが、今回、新たに疑問が出てきたのです。
それは、Ⅹ∧(X+1)という式を考えたときでした。Xに0を代入したとき、この式の値がどうなるか考えてみたのです。いま、0⁰が定義できない、という立場をとるとします。素直にXに0を代入すると、0∧(0+1)=0¹=0と計算できると思います。しかし、X∧(X+1)=X・X∧Xとすると、
0・0⁰となりますが、0⁰は定義できないという立場ですから、これを些か拡大解釈になるかもしれませんが、数として定義できないことだとすると、数でない0⁰に0をかけて0としてよいのか?という疑問が起こってきたのです。と言って、素直に計算した場合は、0⁰が定義できない立場でも、0としてよいと思える。そのために別にトリッキーなことは何もしていないし…。
やはり、整合性も考えると、0・0⁰=0とすることになるのでしょうか?それとも、0⁰が定義できない立場では、X∧(Ⅹ+1)のXに0を代入するとき、X・X∧Xとしては計算しないこととでも約束するのか?どうなのでしょうか?
A 回答 (19件中1~10件)
- 最新から表示
- 回答順に表示
No.19
- 回答日時:
そうなんだ。
知らなんだ。それだと、0^0 もだけど
多価関数の枝選択はどうしてるんだろう?
途中結果を目視せずに長い計算をさせると、
そこで足を救われそうで恐いね。
No.18
- 回答日時:
>プログラム言語では、x^y は (浮動小数点数)^(非負整数) で、
>指数関数とは別扱いだからね。
pythonはnativeに複素数サポートしてて
複素数の複素数乗をサポートしてますね
Python 3.11.4 (main, Sep 30 2023, 10:54:38) [GCC 11.4.0]
Type 'copyright', 'credits' or 'license' for more information
IPython 8.29.0 -- An enhanced Interactive Python. Type '?' for help.
In [1]: (3+3j)**(3+4j)
Out[1]: (-0.9213848962788078+3.1689076799790614j)
これと 0**0→1 や、0.0**0.0→1.0 をどう整合させているかわ
今のところ私には謎。単に場合分けかもだけど詳細不明。
No.17
- 回答日時:
←No.14
Phython に限らず、多くのプログラム言語で 0^0=1 としているのは、
そのほうが、多項式の記述が簡単になるからです。
そもそも、その理由でクヌースが 0^0=1 を推したことが
1 と定義する説の重要なソースになっている。
プログラム言語では、x^y は (浮動小数点数)^(非負整数) で、
指数関数とは別扱いだからね。
No.16
- 回答日時:
No.12 No.15 の計算自体は正しいけれど、
それが 0^0 の定義と何の関係があるのかは大いに疑問。
x^y の (x,y)=(0,0) での連続性は、
lim[x→0] x^x ではなく
lim[(x,y)→(0,0)] x^y で考えなくては、意味がない。
そして、通常の x^y の定義では
lim[(x,y)→(0,0)] x^y は収束しない。
No.15
- 回答日時:
X∧XのXに0を代入することはできないけれども
X∧XのXを0に近づけることはできて
lim[X→+0]X∧X=1
だから
X>0のとき
X∧(X+1)=X・X∧Xだから
lim[X→+0]X∧(X+1)=lim[X→+0]X・lim[X→+0]X∧X
↓lim[X→+0]X∧X=1だから
0=0∧1=0∧(0+1)=0・1=0
No.14
- 回答日時:
全くの蛇足だけど python では 0^0 は 1 です。
Python 3.11.8 (tags/v3.11.8:db85d51, Feb 6 2024, 22:03:32) [MSC v.1937 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> 0**0
1
このほかに、ruby , Javascript, C#、 C++など主だったプログラミング言語では1 ですね。
高校の授業でも 1 と教える先生が多いらしいです。
個人的には未定義だと思う。
No.13
- 回答日時:
←補足 12/17 20:31
No.11 にも書いたとおり、ハミルトン四元数内に「0⁰ 軸」を取ることは
既に考えてみたが、どうやったら指数法則を保って 0⁰ を定義できるのか
やって見た範囲では見つからなかった。
何をどうやるのか、詳細キボンヌ。
No.12
- 回答日時:
lim[X→+0]X∧X
=lim[X→+0]e^{XlogX}
=lim[t→∞]e^{-t/e^t}
=1
だから
Xを0に近づけると、
X∧X
は
1に近づきます
No.11
- 回答日時:
←補足 12/16 21:08 〜 12/17 08:54
複素数を部分体に持つ実代数を何か定義して
その中に 0⁰ の値を置く... て考えは、
ちょっと魅力的だけど、うまくはいかなそうな感じ。
その 0⁰ 軸を持つ代数は、実代数として 3 次以上になるが、
実数体の拡大体で複素数体より大きいものは
3次では存在しなくて、4次で斜体のハミルトンの四元数、
8次で非結合体の八元体しかない。
それ以上の次元のクリフォード代数も知られているが、
可除環にはならない。
で、四元数や八元数の中に 0⁰ 軸がとれるか?ていうと、
すこし考えてみたが、指数法則が保たれるようなものは
(私では)見つからなかった。
No.10
- 回答日時:
lim[(x,y)→(0,0)] x^y が収束しないことは、話の出発点として、
その上で、不連続でもいいから 0^0 を何か定義しとくと便利かもね
って議論の先に 0^0 = 1 とか 0^0 = 0 とかの話が出てくるわけでね。
世間的には 0^0 = 1 を推す人が多い。 私は、未定義のが好きだけど。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
「普通のサイコロ」で連続して40回、1以外の目が出る確率は、(5/6)の40乗です。計算すると、0.
数学
-
=って逆も正しくないとダメですよね?「ゴリラ=動物」って動物はゴリラ以外もこの世に存在するので「=」
数学
-
誤差の大きさ
数学
-
-
4
【数学の問題】男女4vs4の合コンでカップルが成立するパターンは何通り?
数学
-
5
4500と3000を1:9と3:7とか比率で表すにはどういう計算で表すのですか?
数学
-
6
「0⁰再び」について
数学
-
7
半径1の円の面積がπになることを、積分を用いて示せという問題について質問です。この円はy=√1-x^
数学
-
8
2x+4y-2 4x+18y+6 の連立方程式って(-3.1)であってますよね? 答え確認したら(3
数学
-
9
10のマイナス14乗の呼び方
数学
-
10
この回答あってる
数学
-
11
123を使って出来る最大の数は?
数学
-
12
limn→∞、10∧n=0?
数学
-
13
この問題、解き方は理解したのですが、なんか何がしたいのかよく分かりません。解き方は良いので解法を要約
数学
-
14
f(x)=f(x²)はどんなグラフになりますか?
数学
-
15
√1って|1|もしくは±1ですよね?
数学
-
16
素数発見の新記録 実用面で何か意義があるものでしょうか
数学
-
17
中高で数学をやる意義は? と聞かれたらみなさんなんて答えます?
数学
-
18
矛盾法
数学
-
19
大学数学 質問です 上限、下限の定義で疑問に思う点があります。 上限についてお話しします。 多くの上
数学
-
20
四角柱の定義の中に「底面が互いに平行である」ことは含まれますか?平行六面体の定義を知る上で必要な知識
数学
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
線形代数の問題だと思う行列の...
-
複素数平面
-
線形代数で正方行列の性質について
-
(0,1)=[0,1]?
-
2次関数
-
純正ロイヤルストレートフラッ...
-
Quantam Mechanicsとは
-
決定性有限オートマトン
-
行列の計算で
-
ノルム空間でノルムが連続であ...
-
lecture noteがある場合の板書...
-
(x^2 -y)y'=xy-1
-
この問題、解き方は理解したの...
-
数学の思考プロセスを理解する...
-
2m=8はわかるのですが、2n=6...
-
【数学の問題】男女4vs4の合コ...
-
正規分布は一見、円と何も関係...
-
この余りが1、余りが3という...
-
高校数学 ベクトルの計算
-
式の展開
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
至急 a²b+a-b-1 の因数分解...
-
limn→∞、10∧n=0?
-
コピーしたい本のページ数
-
ルービックキューブと群論
-
この問題、解き方は理解したの...
-
三角形の面積は、底辺✕高さ÷2 ...
-
高校数学について
-
上が✖で下が〇になる理由が、何...
-
3つの無理数a,b,cでf(x)=x^3+ax...
-
文字置き 必要条件・十分条件に...
-
(0,1)=[0,1]?
-
数学の問題点を尋ねることがで...
-
写真は2変数関数の合成微分の公...
-
【問題】 f(x) = x^2 - 4a x + ...
-
1/(s(s^2+2s+5))を部分分数分解...
-
https://youtube.com/shorts/Kw...
-
青の吹き出しの何をどう考えれ...
-
数学の質問:関数の書き方
-
数ⅱ等式の証明について。 条件...
-
ランダウの記号のとある演算
おすすめ情報
幾つか御意見を承りましたが、結局、0・0⁰=0とするほうがよさそうです。0⁰を定義できないor定義できないどちらにせよ、0・0⁰の値を定めないとすると、0¹や0²なども値を計算できなくなってしまいかねない(0¹=0∧(1+0)、0²=0∧(2+0)という形で表現できるだろうから)。それでは窮屈だし数学が面白くなくなります。
0⁰についての考えを今少し、補足させていただこうと思います。今まで、0⁰について、「定義しない(できない)」、「=1とする」、「=0とする」という立場というか、考え方があったと思いますが、もう一つ、新たな考え方というか扱いがあるということなのです。それは、0⁰を実数でも虚数でもない、新たな数として導入するというやり方です。幾何学的イメージでいえば、複素平面に直交する0⁰軸とでもいうべき軸があり、いわば3次元空間を構成するとでもなりましょうか。ただし、原点0では、実際にはどの軸も交わっていません。虚数biの実数係数bが限りなく0に近づくということと同様に、b0⁰の実数係数bが限りなく0に近づくということになります。
そして指数法則は成り立つものとすると、0⁰を何乗しても、0⁰のままとなります。
次に移ります。
(0⁰)∧x=0∧(0・x)=0⁰ということです。また、b0⁰はもうこの形でしか表せないものとなります。ただし、0をかけた場合は実数の0となる。これは、虚数iとよく似た状況と言えましょう。
そして、a+b0⁰ a:実数 という式で表される数は、複素平面と0⁰軸で構成される3次元空間内で、(a,0,b)の座標の点として表される。ここで、(実数座標値、虚数座標値、0⁰座標値)となります。
この考えを使えば、例えば、0⁰=1とする立場は、0⁰軸上の1・0⁰の位置を通り、複素平面に平行な平面上で計算を行う場合とできることになる。0⁰=0とする場合は少し注意が必要ですが。
ただ、この考えでは、0⁰をX∧XのXを限りなく0に近づけた場合の極限として定義しようとする場合とか、ともかく、冪乗の計算で定義しようとする立場とどう折り合いをつけるか、という問題が発生するのではないかと思われます。次へ
思い切って、0⁰はべき乗の形をしているけれども、この考えというか、体系の下では、べき乗で表される数ではないのだと割り切ってしまうことが必要になるかもしれません。他にも定義上でも計算の種類によっても、解決せねばならない問題が色々とあると思いますが、面白い考えだとはいえるのではないでしょうか。
さらに補足します。上述の幾何学的解釈で例えば0⁰=1とする立場では、複素平面と0⁰軸により構成される3次元空間において、0⁰軸上の1・0⁰の点を通り、複素平面に平行な平面上での計算を行うことになるとしました。ただし、0・0⁰=0とする以上、この場合だけは、この平面上から抜け出す必要があるようです。これはあまりキレイな形と言えず、ちょっと残念ですが…。
さらに、補足。0⁰=1とする立場での計算は、0⁰軸上の1・0⁰の点を通り、複素平面に平行な平面上での計算をすることとしましたが、より詳しく言うと、|b0⁰|=|b| として、b=1の場合のときの値を
形式上、0⁰の値と見做して計算するということになりましょう。
取り急ぎ、補足を。0⁰軸上の一点を通り、複素平面に平行な平面上での計算になるとしましたが、それとは異なり、3次元空間内でのベクトル移動のごとくになるでしょう。
今朝は余裕がなかったため、粗い説明になってしまったので、もう少しだけ詳しく言うと、3次元空間というより4次元空間でのベクトルとなるでしょう。0⁰軸と実数、虚数軸で構成される3次元空間内のベクトル値として、a+bi+c0⁰があり(a,b,c:実数)、これに0⁰を掛けると、分配法則等が成り立っているとして、a+c0⁰だけなら0⁰軸上の点に移る作用となるでしょう。
これはこれでいいのですが、b・0⁰・iはどうなるか?と考えた時、0⁰・i軸をもう一個、直交させる必要があると思うのです。これで、0⁰-実数- 虚数-0⁰・i軸からなる4次元空間内の点が0⁰-0⁰・i軸からなる平面上の点に移されることになります。
つまり、扱う対象がa+bi+c0⁰+ d0⁰という式で表されるベクトルになるという考えです。この考えを活かせる場面が発見されるのに100年ぐらいかかるかもしれませんが。
あと2回の補足ということで…。0⁰はべき乗の形をしているけれど別物と言っておきながら、指数法則が成り立つとして計算できるなどはおかしいという話もあるのですが、0⁰はべき乗もどきで、冪上の数そのものではないけれど、いかにも指数法則が適用できる数として形式的に扱えるという立場をとるということになるでしょう。確かに苦しい言い訳じみたことですが、1000年後の数学に期待するということで。
ラスト。0^m・0⁰=0^(0+m)=0^m=0とします(m:実数)。では、0^iやi・0^iは(i:虚数)?
これまで同様、これらを独自の数として、0^i軸、i・0^i軸とすると、6次元空間を構成することになるのかも。すると、6次元ベクトルとして表わされる数に0^iやi・0^iを掛けるのは、6次元ベクトルを2or3次元ベクトルに変換することになるのかもしれません。ただし(0^i)^iは禁じ手とすべきでしょうね。あと、1/(0⁰)や1/(0^i)といった除算も御法度にするのが無難でしょう。定義しようとすると面白からぬことになりそうですから。窮屈にはなりますが、何事も代償が伴うものです。それから対数や三角関数を適用できるかどうか?やるとすれば、テイラー展開などを使うことになるでしょうが、現段階ではそこまで検討する予定はありません。