質問投稿でgooポイントが当たるキャンペーン実施中!!>>

熱交換器における基礎式を教えてください。
蒸気と水での熱交換を行う際に、入口温度と出口温度の関係、
それに流速等も計算のデータとして必要なんだと思うんですが、
どういう計算で熱量、流速を決めればいいのか熱力学の知識がないので
分かりません。
いろんな書籍を買って勉強していますが、難しくて分かりません。
それに独学ですので、聞ける人がいなくて困っています。
どなたか、簡単に熱交換の基礎式などを教えてください。

このQ&Aに関連する最新のQ&A

A 回答 (3件)

 伝熱の計算は非常に難しいのですが、「難しい」と言っているだけでは先に進みませんので、そのさわりを。


 基本式は、Q=UAΔtです。
 Q:交換される熱量
 A:伝熱面積
Δt:伝熱面内外の温度差
  (冷却水入出の差ではない)

 ここで曲者は、U(総括伝熱係数とか熱貫流係数とか呼ばれるもの)です。
 Uの内部構造は、1/U=1/h1+1/hs1+L/kav.+1/hs2+1/h2と表現され、hを見積もる事が大変難しいのです。
 h:伝熱面の境膜伝熱係数、内外2種類有る。
 hs:伝熱面の汚れ係数、内外2種類有る。
 L:伝熱面厚み
 kav:伝熱面の熱伝導率の異種温度の平均、熱伝面内外で温度が異なり、温度によって変化する熱伝導率を平均して用いる。
 hは、流体の種類や流れる速さ(主な指標はレイノルズ数)によって変化します。
 hsは、どの程度見積もるか、、、設備が新品ならZeroとしても良いのですが、使い込むとだんだん増加します。
 更には、Aも円管で厚みが有る場合は、内外を平均したり、Δtも入り口と出口の各温度差を対数平均するとか、色々工夫すべきところがあります。

>冷却管はステンレス製(SUS304)です。
 →熱伝導度の値が必要です。
>冷却管の中の水の温度は入口が32℃で出口が37℃です。>流量は200t/Hr程度流れております。
 →冷却水が受け取る熱量は、200t/Hr×水の比熱×(37-32)になります。この熱量が被冷却流体から奪われる熱量です。=Q
>冷却管の外径はφ34で長さが4mのものが60本
>冷却管の外径での総面積は25.6m2あります。
 →冷却管の壁厚みの数値が計算に必要です。
 伝熱面積も外側と内側を平均するか、小さい値の内側の面積を用いるべきです。

 まあしかし、現場的な検討としては#1の方もおっしゃっているように、各種条件で運転した時のU値を算出しておけば、能力を推し測る事が出来ると思います。
 更には、熱交換機を設備改造せずに能力余裕を持たせるには、冷却水の温度を下げるか、流量を増やすか、くらいしか無いのではないでしょうか。
    • good
    • 8
この回答へのお礼

ご回答ありがとうございました。
詳細に分かりやすくご説明いただいたこと、大変感謝いたしております。
お礼が回答順前後したこと、ご容赦下さい。
私先日このQ&Aに登録したばかりで、使い方がまだ熟知できておりませんで、申し訳ありません。
私のような知識のないものでも何とか理解できるよう、なるべく分かりやすくご回答いただいていることがひしひしと伝わり、
学生時代にお世話になった先生のことを思い出しました。
本当にありがとうございました。
いただいたご回答を参照させていただき早速検証してみます。

お礼日時:2006/02/19 08:55

回答されているように熱交換器の必要伝熱面積の計算は難解です。


特に冷却水管外側の熱伝達係数の計算が困難であることが主因かと。

熱交換器のメーカさんは実験などの基礎データ、実績などの
ノウハウを元に計算されていると思います。
自分で設計する場合は、いろいろ文献を見て、近似を入れながら
気合で必要伝熱面積を求めてマージンをとって大きめに熱交換器を
作って、実運用では冷却水を絞って誤魔かすか、というような
感じでしょか。

ということで、まず設計した人に聞く、とか、設計の条件
(流量、温度他)と運転条件がどのくらいずれているの整理
してみると何が悪いかわかることもあるのですが。。。と、
回答したいところですがこんな回答をしてもしょうがないので。。

状況が良くわからないので仮定に仮定を重ねての回答ですが、
性能が出ていないということは凝縮量が足りない、ということ
でしょうか。
冷却水の流量も入口温度も大きく変わらない、ということだったら
私であれば概略下記のように必要伝熱面積を計算します。

まず現状の交換熱量Qを計算します。
Q=200t/Hr x 水の比熱 x (37℃-32℃)
また必要交換熱量Q'と、ある冷却水入口温度に対して、必要な量
だけ熱交換できた時の冷却水出口温度を計算します。
具体的には
必要交換熱量 = 必要凝縮量 x 凝縮熱
= 200t/Hr x 水の比熱 x (冷却水出口温度-冷却水入口温度)
を解いて冷却水出口温度を求める(*)。
蒸気の温度は飽和温度で一定でしょうか。
さらに、現在運転されている熱交換器の対数平均温度差ΔTm(蒸気の
飽和温度と冷却水温度32℃と37℃で計算)を求め、さらに必要
交換熱量が得られた時の対数平均温度差ΔTm'(蒸気の飽和温度と
蒸気(*)で計算した入口/出口温度)を計算します。

交換熱量=熱通過係数 x 伝熱面積 x 対数平均温度差
の関係があるので、熱通過係数係数が一定であるとすると(←これ注意)
必要伝熱面積 = (ΔTm x Q')/ (ΔTm' x Q) x 現状の伝熱面積
です。

改造するのであれば、コストなどを考慮して適当にマージンを
取って伝熱面積を決める、って感じ。

伝熱学のプロに言わせると、"熱通過係数係数が一定"という近似は
暴力的だと言われるのは分かっていますが、だからと言って他に
もっと良い計算方法(主として冷却管外側の熱伝達係数の)があるか、
というと文献を見てもたぶん無いと思うので、検討時間を考えると
悪くない近似のように思います。
    • good
    • 5
この回答へのお礼

ご回答ありがとうございます。
大変参考になりました。
色々な書籍を買いあさって勉強するよりもはるかに実務的で、
分かりやすく、ご回答いただいたこと大変感謝いたしております。
私が数万円かけて買いあさった書籍はなんだったんだろうっていう感じです。
早速私なりに検証してみようと思います。
ちなみに元となる設計者に確認しましたら、総括伝熱係数はU=300kcal/hr・m2・℃で計算したとのこと。
それ以外詳細な説明をいただけず困っておりましたところ、
本当に助かりました。
知識のない私にとってke-ke様のご教示ありがたいです。

お礼日時:2006/02/19 08:43

難しいですよ。


ほぼそのようなことを仕事としてやっていますが。
基本的に
・熱伝達
・熱伝導
の二点が熱交換器ではモンダイとなります。
単に授受したい熱量を計算するのだけでも、熱交換器自体の交換効率も関わってきます。交換効率自体も双方の流体の流速によって変動します。(流速による熱伝達率が変動するため。)
ですから、すべてのパラメータが変動する場合には簡単な計算では導き出せないのです。
少なくても、熱を送りたい方の流体の各種パラメータ(出入口温度、流速)は固定して一定量の熱を送った場合について受ける側のパラメータ変動を順々に変動させていく方向で検討できませんか?
であれば、交換器よ送り側の流体の物性値からある程度の各種パラメータの計算は可能になると思います。
ただし、表面熱伝達率は流速による変動があるため定数にできません。
これはいろいろな人が実験式により導き出していますので各種文献の検索は間違いなく必要です。

独学とのこと、がんばってくださいね。

この回答への補足

ご回答ありがとうございます。
もしよろしければ、下記条件での簡易的な所要伝熱面積の計算方法があればご教示いただけないでしょうか?
熱交換のやりかたといたしましては、ある容器の中に水分を入れてその水分を一定量(750Kg/Hr)で蒸発させております。
蒸発した蒸気は容器内側上部に通した多数の冷却管で冷やされます。
冷却管で冷やされ水分になったものは外部に排出される構造になっております。
冷却管はステンレス製(SUS304)です。
冷却管の中の水の温度は入口が32℃で出口が37℃です。
冷却管の外径はφ34で長さが4mのものが60本
冷却管の外径での総面積は25.6m2あります。
流量は200t/Hr程度流れております。
実は既存でできあがっている装置なんです。
それが能力がでないので困っている次第です。
水分の蒸発量に問題がないことは確認できましたので、
冷却管の水量、流速、伝熱面積に問題があるのではないかと思い
今回の質問をした次第です。
もしご面倒でなければ、是非ご教示下さい。

補足日時:2006/02/18 16:57
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q交換熱量の計算

問題:「今、40℃の水が10L/minで流れています。この水を10℃まで冷やす時の交換熱量はいくらでしょうか?」
比熱、流量、熱量、温度差を使って解いてみたのですが、結局求めることができませんでした。
どなた様か教えていただくとありがたいです。

Aベストアンサー

普通、ある量の水の温度変化に伴う熱の出入りは
質量*比熱*温度変化
で与えられます。例えば1kgの水が100度変化したら
1000*1*100=100000 カロリー
です。流れている水の場合は上式の質量の代わりに単位時間当たりの質量を使えば同様に計算できます。水の密度は温度によらず1g/mlと仮定すると単位時間当たりの質量は10kg/minなので熱量は
10000*1*30=300000 カロリー/min
になります。単位時間当たりの熱量として出てくることに注意して下さい。

Q伝熱面積についてご教授ください

当方、熱について全くの素人です。
今回、化学反応漕の加熱ならびに除熱をおこなうための
熱交換器の伝熱面積を算出しなければならなくなりました。
ネットなどで調べてみたのですが、全く解らず途方に暮れ、
どなたかご教授いただければと思い投稿させていただきました。

条件は以下の二つになります。

加熱
漕液量:250(L)
温度条件(所定温度まで2時間):15(度C)-> 62(度C)
蒸気圧力:2.7(kgf/cm2)
加熱熱量:7050(kcal)

冷却
漕液量:250(L)
温度条件(所定温度まで2時間):15(度C)-> 27(度C)
冷却:チラー水 10(度C)

加熱につきましては、蒸気表より129.32(度C)を求め、
私なりに計算をしてみましたが全く自信がありません。
どうぞよろしくお願いいたします。

Aベストアンサー

熱交換器の設計は
Q=KA△T
です。
Q:熱量(kcal/h)
K:熱通過率(kcal/m2h℃)
A:伝熱面積(m2)
△T:対数平均温度差(℃)

そこで、質問者様がどのような熱交換器をつかうかによってK値が変わってきます。K値が分からないと、伝熱面積は計算できません。K値は伝熱する面を通過する速度、材質などによって変わってきます。
例えば、風呂の中に氷の入った袋を入れます。お湯を撹拌した時の方が氷の解けが早いはずです。同じ物(材質、形)でも熱の伝わりが変わってきます。それをK値で表わしています。

本題は、熱交換器メーカーに問い合わせるのが一番いいですね。
彼らは、このK値が熱交換器の形によっていくつか?分かっています。
液体が何か分かりませんが、ステンレスでもチタンでも銅、フッ素樹脂でも作れますよ。

熱交換の液体(材質選定のため)
その液体の入口、出口温度、流量、比熱、比重、粘度など
蒸気の温度(圧力)、チラー水の入口、出口温度、流量

これぐらいあれば金額大きさ全部教えてもらえますよ。

QNをkgに換算するには?

ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?一応断面積は40mm^2です。
1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?
ただ、式の意味がイマイチ理解できないので解説付きでご回答頂けると幸いです。
どなたか、わかる方よろしくお願いします。

Aベストアンサー

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kgfです。

重力は万有引力の一種ですから、おもりにも試験片にも、地球からの重力はかかります。
しかし、試験片の片方が固定されているため、見かけ、無重力で、試験片だけに40kgfの力だけがかかっているのと同じ状況になります。

試験片にかかる引っ張り力は、

40kgf = 40kg×重力加速度
 = 40kg×9.8m/s^2
 = だいたい400N

あるいは、
102グラム(0.102kg)の物体にかかる重力が1Nなので、
40kg ÷ 0.102kg/N = だいたい400N


>>>1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?

いえ。
1kgf = 9.8N
ですね。


>>>一応断面積は40mm^2です。

力だけでなく、引っ張り応力を求めたいのでしょうか。
そうであれば、400Nを断面積で割るだけです。
400N/40mm^2 = 10N/mm^2 = 10^7 N/m^2
1N/m^2 の応力、圧力を1Pa(パスカル)と言いますから、
10^7 Pa (1千万パスカル) ですね。

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kg...続きを読む

Q放熱量の計算式と計算を助けてください

 ビニールハウス内に銅管を張りめぐらして,お湯を循環させることで暖房することを設計したいのですが,熱湯を循環させて,何メートルの銅管を巡らしたら放熱量がどれほどになるか,見当がつきません。以下のような条件の場合の,銅管全体からの放熱量とお湯の出口での温度について,計算式と答えを教えていただけないでしょうか。
(1)室内気温:0℃ (2)銅管の長さ:50m (3)銅管の規格:内径10mm,厚さ1mm (4)投入時のお湯の温度:95℃ (5)ポンプによる流速:100リットル/分

 よろしくお願いします

Aベストアンサー

#2です。
補足について、

(1)
1480[W]=1480[J/s]=1480[J/s]*0.24[cal/J]*3600[s/h]*1/1000[kcal/cal]=1280[kcal]h]

この場合、伝熱量を大きくしたいなら、伝熱面積を大きくするに尽きるでしょう。
そのためには、配管を長くするか、複数の配管にする。管を太くするのは効果がない。細い配管をたくさん使う。

(2)
伝熱(放熱)量は、外気とお湯の温度差(平均)に比例します。
お湯の温度が下がる→平均温度差が小さくなる→伝熱量が小さくなる
です。
また、
伝熱量はお湯の温度が下がった分だけではなく、お湯の流量に比例します。
流量が多ければ、温度が少ししか下がらなくても伝熱量は大きくなる。
いずれも、計算式に表されています。式をよく見てください。「納得感」とは関係ありません。
あなたの「理解に欠落」あるのでしょう。
なお、
内径10[mm]の管に100[L/min]の流量だと、流速が20[m/s]以上になる。ふつう液体をこんな流速では流しません。
ポンプが大変でしょう。せいぜい数[m/s]程度までにしましょう。

#2です。
補足について、

(1)
1480[W]=1480[J/s]=1480[J/s]*0.24[cal/J]*3600[s/h]*1/1000[kcal/cal]=1280[kcal]h]

この場合、伝熱量を大きくしたいなら、伝熱面積を大きくするに尽きるでしょう。
そのためには、配管を長くするか、複数の配管にする。管を太くするのは効果がない。細い配管をたくさん使う。

(2)
伝熱(放熱)量は、外気とお湯の温度差(平均)に比例します。
お湯の温度が下がる→平均温度差が小さくなる→伝熱量が小さくなる
です。
また、
伝熱量はお湯の温度が下がった分だけではなく、お湯の流量...続きを読む

Q水の温度上昇の計算式

水の温度上昇の計算式

水をヒーターを使って温度を上昇させる時のヒーター容量の計算式を教えてもらえませんか。
例えば20度の水を90度に70度上げるといった様な。
宜しくお願いします。

Aベストアンサー

ジュールで計算するかカロリーで計算するかにもよりますし水の比熱は温度により多少異なるので近似値になりますが

温度差(Δt)×水の比熱(≒4180J/K・kg)×水の量(kg) で必要な熱量(ジュール数)がわかります
1Jは1W・s(ワット秒)なので
先に求めたジュール数を 「何秒かけて加熱すればいいか」の秒数で割るだけです

例 
30L、20度の水を3分で70度にしたい場合
(70-20)×4180×30=6270KJ
これを180秒で割ると 34.8kw

Q3相電動機の消費電力の求め方

3相電動機の消費電力の求め方について質問です。

定格電圧 200V
定格電流  15A
出力   3.7KW

上記の電動機ですが実際の電流計指示値は10Aです。
この場合の消費電力の求め方は
√3*200*15=5.1KW
3.7/5.1*=0.72
√3*200*10*0.72=2.4KW
消費電力 2.4KW

このような計算で大丈夫でしょうか?
宜しくお願いします。

Aベストアンサー

出力は軸動力を表しているので、消費電力はそれを効率で割る必要があるかと思います。
概算で出してみると、定格での効率が85%程度と仮定すると、定格時の消費電力は3.7/0.85=4.4kW程度になります。
この時の一次皮相電力は、5.1kVAで、無効電力Qnは√(5.1^2-4.4^2)=2.6kVar程度になります。

この無効電力は励磁電流が支配的でしょうから、負荷によらず変わらないとすると、軽負荷時に線電流が10Aになったときの皮相電力は√3*200*10 で3.5kVAで、このときの有効電力は√(3.5^2-2.6^2)=2.3 kW という具合になりそうに思います。

Q回転数と流量、揚程、動力の関係について

こんにちは。
ポンプで回転数nと流量Q、回転数nと揚程H、回転数nと軸動力Lの関係について回転数n1、n2としたときQ1/Q2=n1/n2、H1/H2=(n1/n2)^2、L1/L2=(n1/n2)^3とそれぞれ1乗、2乗、3乗の関係がある
解説を見るのですがこの根拠を教えて下さい。

Aベストアンサー

 
根拠は「運動とエネルギーの関係」です。
ポンプを理想化した原理的な表現です。


1.流量。
直径Dの車輪がn回転/秒で回ってる場合の外周の速度は
  V = πD・n  です。
外周に羽根を付けて水を掻くと、水も同じ速度Vで動きますから、

(1) 流量Qは 『 回転数に比例 』 します。
(2) Q = k・n  比例式で表した。kは比例係数。
(3) Q1/Q2 = n1/n2 係数を使わない形の比例式。

 (3)は、(2)の適当な2カ所、Q1=k・n1、Q2=k・n2 を分数にしただけのものです。分数にするとkが消えますよね。kは水車の寸法とか水の抵抗などが絡む現実的なものだから、抽象的な話をするときには出て欲しくない、そこで(3)のように「出てこない形」にするのです。
さらに、分数にすればメートルとかkgとかの次元も約分されて消えてしまうので「ただの数」になります。10rpmと20rpm、1000rpmと2000rpm、分数ならどちらも「2倍」となり、理論的、抽象的に説明をやりやすいのです。



2.揚程
物理の「運動エネルギと位置エネルギの関係」そのものです。物理の教科書にある式、
  1/2・mV^2 = mgH  Hは高さ
これを上記の(3)をマネして、V1のときH1、V2のときH2、の記号を使って分数にすると、gもmも1/2もみんな消えて、
  (V1/V2)^2 = H1/H2
となりますね、見やすいでしょう?
Hは揚程そのものだし、回転数と流速Vは上記1から分かるように比例です(この比例計数も分数で消えてしまうことが理解できますか?)。
  (n1/n2)^2 = H1/H2
となります。



3.動力
動力(ワットとか馬力)は、単位時間のエネルギ量(ジュール)、すなわち ジュール/秒 です。
単位時間に運ばれる流体の質量は
  m =ρQ kg/s
ρは流体の密度kg/m^3、Qはm^3/s
連続して毎秒、位置エネルギmgHを与え続けるから、その動力は
  L = mgH = ρQgH J/s
これもまた分数化すると、
  L1/L2 = (Q1H1)/(Q2H2)
これにQとHの式を入れると、
(以降は自分で。)



(分数にしてただの数にする方法を、無次元化や基準化などとも言います)

 
根拠は「運動とエネルギーの関係」です。
ポンプを理想化した原理的な表現です。


1.流量。
直径Dの車輪がn回転/秒で回ってる場合の外周の速度は
  V = πD・n  です。
外周に羽根を付けて水を掻くと、水も同じ速度Vで動きますから、

(1) 流量Qは 『 回転数に比例 』 します。
(2) Q = k・n  比例式で表した。kは比例係数。
(3) Q1/Q2 = n1/n2 係数を使わない形の比例式。

 (3)は、(2)の適当な2カ所、Q1=k・n1、Q2=k・n2 を分数にしただけのものです。分数にするとkが...続きを読む

Q熱伝達率について

熱伝達率について調べると、流れている空気の場合、11.6~290.7w/(m^2・k)とありますが、下記の条件の場合の熱伝達率は概算値でけっこうですので、分からないでしょうか?
表面積0.03m^2の円筒物、温度80℃、重量2kg、物質の密度7.874×10^3kg/m^3、体積0.256×10^-3m^3、比熱461J/(kg℃)
1540mm×2700mm×300mmで囲われている室内で、周りの雰囲気温度17℃、室内には17℃の空気が2.5m/secで流れている状態内に、80℃の物体が置かれている。
熱伝達率は、レイノルズ数とプラントル数などにより定義され、実験値や複雑な計算が必要と思われますが、やり方の方向性が知りたいための熱伝達率なので、大体の数値でいいので、教えて頂けないでしょうか

Aベストアンサー

「対流による物体の冷却後の温度」でお答えした inara1 です。
Re や Pr をご存知なのでちゃんとしたお答えをします。

以下に計算方法を書きますが、熱伝達率は 35 ~78 [W/m^2/K] となりました。この値からワークの温度変化を計算すると、20秒間に76.9 ~ 78.6 [℃] に下がることが分かりました。

【確認】
円筒物とは中がつまった円柱のことですね?
ご質問のワークの体積と表面積から円柱の直径 R と長さ L を計算すると、以下の2通りの場合がありますが、(1) のほうですね。(2) だと円板になりますので。
   (1) R = 0.0367 [m]、L = 0.242 [m]
   (2) R = 0.116 [m]、L = 0.0242 [m]

【円柱外部を冷却するときのNu数】
円柱を強制空冷する場合、空気を円柱軸に沿って流す場合と円柱側面に冷気を当てる場合では Nu(ヌセルト数)が異なりますが、普通は円柱側面に冷気を当てると思いますので、その場合の実験式は次のようになります。
   Nu = C*Re^n*Pr^(1/3) --- (1)
Re はレイノルズ数、Pr はプラントル数で
   Re = u*R/ν --- (2)
です。u [m/s] は冷気の流速、R [m] は円柱の直径、ν [m^2/s] は冷気の動粘性係数です。Pr と ν の値は、冷気温度と円柱表面の温度の平均温度での値を使います。Pr と ν の温度依存は[1] で計算できます。

【Nu数の実験式】
C と n は定数で、Re の値によって以下のような値をとります [2]。
     Re         C    n
   40~4000     0.683 0.466
   4000~40000   0.193 0.618
   40000~400000 0.0266 0.806
冷気温度と円筒表面の温度の平均温度が 20℃~80℃の範囲にあるとき、[1] を使って動粘性係数 νを計算すると、3.3×10^(-6) ~ 9.5×10^(-6) [m^2/s] なので、R = 0.0367 [m]、u = 2.5 [m/s] の場合のレイノルズ数は、式(2)で計算すると Re = 9703(20℃)~27500(80℃)の範囲になります。したがって、C と n の値は C = 0.193、n = 0.618 を使えばいいことになります。Re = 9703~27500 に対する Nu は、式(1)で計算すると 50~95 の範囲になります。

【熱伝達率とNu数の関係】
一方、Nu と熱伝達率 h [W/m^2/K] との関係は、円柱の場合
   Nu = h*R/kf
で表わされます。kf は冷媒(空気)の熱伝導率 [W/m/K] です(円柱の熱伝導率と区別するために f をつけます)。空気の熱伝導率の温度依存は [3] で計算すると、冷気温度と円筒表面の温度の平均温度が 20℃~80℃の範囲にあるとき、kf = 0.026 ~ 0.030 W/m/K の範囲になります。したがって、R = 0.0367 [m]、u = 2.5 [m/s] の場合の熱伝達率 h は
   h = Nu*kf/R = 35 ~78 [W/m^2/K] --- (3)
となります。これは質問文にある空気の熱伝達率の範囲に入っています。

【熱伝達率と円柱温度の関係】
考えている円柱は細長いので、内部の温度分布は一様とみなせます [4]。その場合、円柱が一定の熱伝達率で冷却されたときの円柱温度 T [℃] の時間変化は次式で表わされます。
   T = Tc *( T0 - Tc )*exp{ -h*A*t/( ρ*cp*V ) } --- (4)
で表わされます。Tc は冷気温度 [℃]、T0 は円柱の初期温度 [℃]、S は冷却面積(円柱側面の表面積) [m^2] 、t は時間 [sec]、ρは円柱の密度 [kg/m^3]、cp は円柱の比熱 [J/kg/K] です。したがって、 Tc = 17 ℃、T0 = 80 ℃、S = 0.03 m^2、ρ = 7874 kg/m^3、cp = 461 J/kg/K 、V = 0.256×10^(-3) [m^3] のとき、冷気にさらされてから 20sec 後の円柱温度 T20 は以下のようになります。
   T20 = 76.9 ~ 78.6 [℃] --- (5)
これは ANo.1 での概算計算結果
   Tout = 75.9 [℃]
とほぼ同じです(やはり意外に冷えません)。

この計算はクーラのダクトから17℃の冷気が複数の円柱にまんべんなく当たっている場合ですので、ワークの配列によっては結果が違ってきます(これより冷えることはありませんが)。クーラの冷却能力を倍にした場合は、風速を倍の 5 [m/s] にすればいいはずです。式(4)で冷却時間をもっと長くしてみればどれくらいまで冷えるか計算できますが、ワークが冷やされてくると冷気との温度差がなくなっていくので、熱伝達率が一定でも、単位時間に奪われる熱量が減ってくるので、だんだん温度の下がり方が鈍くなります(式(5)で時間を変えて計算してみると分かります)。

空気の動粘性係数 ν や熱伝導率 kf、それらから計算される Re数やPr数、Nu数は、厳密には円柱温度と冷気温度の平均値での値を使わなければなりません。具体的な計算手順は、最初に、円柱温度を75℃くらいと仮定して、その温度と冷気温度の平均の46℃での物性値を使って計算し、出てきた円柱温度と冷気温度の平均温度を使って空気の物性値を補正し、また円柱温度を計算するということを繰り返せば、最終的な円柱温度が出てきます。しかし、式(5)の温度範囲は、冷気温度と円柱表面の温度の平均温度が 20℃~80℃とした場合の値なので、最終的な円柱温度の値は式(5)の範囲に入っているはずです。

【補足】
[1] 1気圧の空気の Pr 数はと動粘性係数 ν は、室温付近では次式で近似されます。
      Pr = 0.713 - 0.0002*t
      ν = 1.296×10^(-6) + 1.02×10^(-7)*t
   t は空気の温度 [℃] です。
[2] 谷下市松「伝熱工学」裳華房(1986)p.142.
[3] 1気圧の空気の 熱伝導率 kf [W/m/K] は、室温付近では次式で近似されます。
      kf =0.0243+0.0000741*t
   t は空気の温度 [℃] です。
[4] 円柱の体積を V [m^3]、冷却面積(側面)を A [m^2]、円柱の熱伝導率を k [W/m/K]、熱伝達率を h [W/m^2/K] としたとき
   h*V/( k*A ) < 0.1
を満たせば内部の温度分布は一様とみなせます。炭素鋼(S53C)の熱伝導率の値はWebでは見つかりませんでしたが、資料 [2] に出ている炭素鋼の値は 54 W/m/K( 0.5C以下)~36 W/m/K(1.5C)なので、45 [W/m/K] くらいとすれば、この場合、Nu = 50~95、V = 0.256×10^(-3) [m^3]、A = 0.03 [m^2] なので、h*V/( k*A ) = 0.0095~0.016 < 0.1 となって条件を見たします。谷下市松「伝熱工学」裳華房(1986)p.83.

「対流による物体の冷却後の温度」でお答えした inara1 です。
Re や Pr をご存知なのでちゃんとしたお答えをします。

以下に計算方法を書きますが、熱伝達率は 35 ~78 [W/m^2/K] となりました。この値からワークの温度変化を計算すると、20秒間に76.9 ~ 78.6 [℃] に下がることが分かりました。

【確認】
円筒物とは中がつまった円柱のことですね?
ご質問のワークの体積と表面積から円柱の直径 R と長さ L を計算すると、以下の2通りの場合がありますが、(1) のほうですね。(2) だと円板になりますの...続きを読む

Q流量の計算式。

流体の流量の計算式でこのような記述を教えて頂きました。
流量=(圧力元吐出口圧力-シリンダ入口圧力)/配管抵抗
流量は、流速×断面積ではないのですか?
これなどのような式なのでしょうか?
成立する場合単位を教えて頂きたいです。
できれば簡単な数値を入れて、計算式を教えて下さい。
お願い致します!

Aベストアンサー

>流量は、流速×断面積ではないのですか?
そうなのだけれど、今問題としているのは、圧力から流量を計算する式がどうなっているか、であるため
流速×断面積という回答ではアウト。

で、流量=流速×断面積という関係があるので、 流速と圧力の関係を式で示す方法でも可。

>これはどのような式なのでしょうか?
要するに、圧力差と流量は比例する、という式。

No.3の回答とは違います。No.3の回答は、圧力差と√流量が比例し、適当な範囲を取り出すなら、
そらは直線で近似できる、ということ。それ自体はそうなのですが、それなら
流量=(圧力元吐出口圧力-シリンダ入口圧力ーα)/配管抵抗
と、なにやら意味不明(=実験などで求める)の定数がオマケに入ります。

で、圧力差と流速は比例する場合と圧力差と√流速が比例する場合は、両方存在。
粘性が低い場合(たとえば水)が√流速に比例し、粘性が高い場合(たとえば油)が流速に比例します。
※厳密に言えば、√流速と流速の中間の中途半端な状態です。また、水の場合でも地下水(流速が遅く、かつ、管径が細い、と考えればよい)なら流速に比例します。
よって、油(など、粘性が高い流体)の場合の計算式がHPに示されていたものと思われます。

式を一般形で書くと、

ΔP=f ・ L/D ・ V^2/2g  (ダルシー・ワイズバッハの式)

f :比例定数(損失係数)
ΔP:圧力差 (=圧力元吐出口圧力-シリンダ入口圧力) 単位は、m。 (圧力を、流体の密度で割ったもの。)
L :管の延長  ただし、曲がりなどは、適当な倍率を掛けて直線に換算する。
D :管の直径
V :流速  お望みなら、Q/ (πD^2/4)と読み替える。
g :重力加速度 約9.8m/s^2

ややこしいのがfであって、定数と書いたけれど定数ではない......
油のような場合、f=X/V (X:今度こそ定数。) 、水の場合はfは定数(として解く場合と、Vの関数として解く場合の両方を使い分ける。)

油の場合、f=X/Vなので、式を整理すれば、
V=ΔP×β (β:式を整理し、管の直径などの定数から計算した定数)
Q=V/Aだから、
Q=ΔP÷(A/β)   ここで、A/βを配管抵抗と定義すれば、元の式と一致。

>できれば簡単な数値を入れて、計算式を教えて下さい。
それ、上の説明で、βの計算式を示すしか方法がないが....
動粘性係数とかレイノルズ数とか出てきて、とてもじゃないけど簡単じゃないです。

>流量は、流速×断面積ではないのですか?
そうなのだけれど、今問題としているのは、圧力から流量を計算する式がどうなっているか、であるため
流速×断面積という回答ではアウト。

で、流量=流速×断面積という関係があるので、 流速と圧力の関係を式で示す方法でも可。

>これはどのような式なのでしょうか?
要するに、圧力差と流量は比例する、という式。

No.3の回答とは違います。No.3の回答は、圧力差と√流量が比例し、適当な範囲を取り出すなら、
そらは直線で近似できる、ということ。それ自体はそう...続きを読む

Q圧力損失とは 

圧力損失について色々検索し調べましたがいまいち分かりませんのでご教授下さい。

供給圧力が一定と仮定した場合
流れる流量と圧力損失(配管長さ)の関係を教えて下さい。
配管径は同じ、配管は水平です。

イメージですが、
圧力損失が増えると流量が多く必要となる。
→配管長さが長いと圧損が大きいので流量が多い。
配管が短いと圧損が小さい→流量が少ない。

以上のイメージから配管を長くすればするほど必要流量が大きくなる。
ポンプの性能で最大流量が決まっているので、ある長さから必要な流量をまかなえなくなる。
そのため、それ以上の長さになると流体は配管の途中で止まってしまう。
こういうことは本当にあるのでしょうか?

長くなりましたが、1.流量と圧力損失の関係、2.上記の理解で正しいかどうかご教授下さい。

Aベストアンサー

全水頭H=供給圧力一定とした場合
全水頭Hは
H=損失水頭+速度水頭=一定

圧力損失が増えると流量が多く必要となる。
圧力損失が増えれば、流速=流量は減る。
(多く必要となる=設計者の意思?)
→配管長さが長いと圧損が大きい
ので流量が多い。=>流量は小さい
配管が短いと圧損が小さい→流量が少ない。=>流量は多い

以上のイメージから配管を長くすればするほど必要流量が大きくなる。
必要流量=だれが必要としているのか?

→配管を長くすれば、圧損がふえ、流量が減る。

ポンプの性能で最大流量が決まっているので、ある長さから必要な流量をまかなえなくなる。
それ以上の長さになると流体は配管の途中で止まってしまう。
流速が減ると損失の減るので単純ではないが大まかには正しい。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング