痔になりやすい生活習慣とは?

一方、プランク質量は、ほぼ10のマイナス8乗kgです。

プランク質量は、他の2つに比べると、何十桁も大きいと思われます。

理由は、日常的な面では、1mも、1sも、1kgも、大雑把にいうと、同じレベルの数値と思われます。なお、これは、言うまでもなく、私個人の感じです。
また、次元の違うものを、比較することは出来ない、ということも,重々承知しています。
が、あえて質問させてもらいます。

なぜ、プランク質量は、非常に大きいのですか? プランク質量は、物理的性質が他の2つとは、まるっきり違うということでしょうか?
諸兄、教えて下さい。

このQ&Aに関連する最新のQ&A

A 回答 (3件)

 プランク長さの物体(粒子)があるとして、それがブラックホールになってしまう質量が、プランク質量という説明があります。



 プランク長さが、物理的に意味のある下限の大きさなわけですけれど、プランク質量はその大きさでの上限の質量なわけですね。最小の大きさについての最大の質量ということです。

 それ以上、質量が大きいと物体(粒子)は事象の地平面に隠されてしまい、物体(粒子)としての性質を失ってしまいます。

 プランク質量は、そういう上限、あるいは最大の質量という意味がありますので、非常に大きいわけです。
    • good
    • 1
この回答へのお礼

早朝、早速の回答ありがとうございました。

<プランク長さの物体(粒子)があるとして、それがブラックホールになってしまう質量>
これは初めて知りました。
これは、プランク質量の性質を表しているのですね。

お礼日時:2012/06/12 11:21

SI単位系は人間を基準に定められていますが、地球外知的生命体は身長や体重や筋力などが人間とは似ても似つかない可能性があります。

これらの地球外知的生命体と共通の言語(=コミュニケーション手段)を持つためには、人間にとって快適なサイズを単位にするのではなく、自然界(=物理学)の仕組みに忠実な単位系にしておく必要があります。

たとえば、SI単位系でエネルギーと質量の関係を表すと、

 E= M x Cの2乗  (Cは真空中の光の速度)

ですが、「Cの2乗」という煩雑な変換定数が必要になります。

一方、エネルギーと質量の関係をプランク単位系で表すと、

 E=M

と表すことが出来て、自然界を単純明快に記述することができるのです。

これであれば、人間とサイズが違う地球外知的生命体ともコミュニケーションがしやすくなるわけです。

マックス・プランクがそう考えたのかどうか、聞く機会を逸してしまいましたが、
SI単位系を「人間の単位系」、プランク単位系を「神の単位系」と呼ぶのは、このような理由からです。
    • good
    • 0
この回答へのお礼

回答ありがとうございました。

なにかえ、神様というのは、人と比べ、
      背は非常に低いわりに、
      体重は軽く、
      鼓動は非常に早く、
      体温は非常に高い、
ちゅうことかいな?

お礼日時:2012/06/13 21:16

プランク単位系は主要な物理定数が 1 になるように


単位系を定めただけで、1に相当する量が日常的な値に対して
小さくなるように決めたわけではありません。

逆に温度のように巨大化するものもあります。
    • good
    • 0
この回答へのお礼

真夜中、早速の回答ありがとうございました。

<温度のように巨大>
なものもあるのですね。不勉強が暴露してしまいました。
<主要な物理定数が 1>
から導き出されたのでしょうが、日常性から見たら、巨大値もあれば極小値もあることに、まだ、しっくりきません。

お礼日時:2012/06/12 11:13

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Q屈折率と波長と周波数の関係について

はじめまして。
ちょっと困っているので助けてください。

屈折率は入射光の波長に依存しますよね?
一般的な傾向として、波長が長くなると
屈折率は小さくなりますよね?
それで、このことを式で説明しようとしたんですが、

屈折率は真空の光速と媒質中の光速の比なので、
n=c/v
媒質中の光の速度、位相速度は
v=fλ
で、周波数と波長に依存します。

ところが!波長と周波数は逆数の関係なので、
この二つの式を使ってしまうと
屈折率が波長に依存しないことになってしまうのです・・・。
どうかこのあたりの説明をおしえてくださいませんか。
よろしくお願いいたします。

Aベストアンサー

ekisyouさん、改めまして初めまして。
ご指摘のようにfとνは全く同じものです。同じ物理量に異なる文字を使ってしまったのは私のミスです、申し訳ありませんでした。また「振動数」「周波数」の二つの言い方を用いましたがこれもどちらでも同じことです。ekisyouさんのこれまでのお考えで正しいです。

前回の回答をもう一度正しく書くと
--------
n=c/v
が屈折率の定義そのものである。真空中の光速cは不変であるからnが波長(または周波数)依存性を持つとしたら媒質中の光速vが周波数依存性を持つことになる。従ってこの式は周波数をfとして
n=c/v(f)
と表すべきものである。
二番目の式
v(f)=fλ
で、vに周波数依存性があることを考えるとfとλは厳密な反比例な関係でない。
--------
となります。大変失礼を致しました。

なお上記の式だけからでは「赤い光の方が紫の光より屈折率が小さくなる理由」は絶対に出てきません。
その理由を説明するためにはどうしても電場中での媒質の分極を考える必要があります。屈折の原因は既にご承知とのことですので、あとはその部分の理解を深めて頂くのみです。
(1)光が媒質中を通過する場合、周囲の媒質を分極させながら進む。
(2)可視光線の範囲であれば、周波数が高くなるほど分極の影響により光は進みにくくなる。
(3)(2)により光の速度が落ちる、ということは即ち屈折率が上がる、ということである。

(2)ですが、共振現象とのアナロジーで考えれば分かりやすいと思います。いまある物体を天井からひもで釣るし、それにさらに紐を付けて手で揺らすこととします。(A)ごくゆっくり揺らす場合は手にはほとんど力はかけなくて済みます。(B )ところが揺らす周期を短くするとだんだんと力が要るようになります。(C)さらに周期を短くして共振周波数に達すると急に力は要らなくなります。(D)そしてさらに揺らす周期を短くしようとすると、あたかもその錘に引張られるような感覚を受けます。(E)そしてさらにずっと周期を短くすると、錘はまったく動かずに錘と手を結んでいる紐だけが振動するようになります。
可視光線はちょうどこの中で(B)の領域になります。すなわち周波数を高くすると、それにつれて周囲の分極があたかも「粘り着く」ようになり、そのために媒質中の光の速度が落ちるのです。(もっとも、「粘り着く」なんて学問的な表現じゃないですね。レポートや論文でこんな表現をしたら怒られそう・・・)

こんな説明でよろしいでしょうか。

参考となりそうなページ:

「光の分散と光学定数の測定」
http://exciton.phys.s.u-tokyo.ac.jp/hikari/section2.htm
同、講義ノート(pdfでダウンロード)
http://exciton.phys.s.u-tokyo.ac.jp/kouginote/opt2k.html

"Kiki's Science Message Board" この中の質問[270]
http://www.hyper-net.ne.jp/bbs/mbspro/pt.cgi?room=janeway

過去の議論例(既にご覧になっているかと思いますが)
http://oshiete1.goo.ne.jp/kotaeru.php3?q=140630

ekisyouさん、改めまして初めまして。
ご指摘のようにfとνは全く同じものです。同じ物理量に異なる文字を使ってしまったのは私のミスです、申し訳ありませんでした。また「振動数」「周波数」の二つの言い方を用いましたがこれもどちらでも同じことです。ekisyouさんのこれまでのお考えで正しいです。

前回の回答をもう一度正しく書くと
--------
n=c/v
が屈折率の定義そのものである。真空中の光速cは不変であるからnが波長(または周波数)依存性を持つとしたら媒質中の光速vが周波数依存性を持つことにな...続きを読む

Q光子の質量?

光子って質量はあるんでしょうか?

光子の質量は0で、0だからこそ、光速で移動するんだとおもっていたのですが、
「重力は質量間に作用する力である」とおもっていたので、
なぜ、光子が重力の影響をうけるのかよくわからなくなってしまったのです。

なんて事を考えていたら更に疑問が。(ーー;
「光子は電磁場の影響を受けるか?」
「電磁波なんだから受けるべ?」というのと、
「電荷をもたなければ影響うけないべ?」という気も。
うーん。どうなんざんしょ?(ーー;

宜しくお願いします。

Aベストアンサー

 量子光学屋で、素粒子論は耳学問なんですが、とりあえず知ってるつもりのことだけ、書かせていただきます。

 古い話ですが、ヤン-ミルズ理論~電弱統一理論では、光子のうち弱い相互作用を司る量子が質量をもち、電磁気力を司る光子が狭い意味でのフォトンになったわけですから、光子が質量をもたないのではなく、電弱統一理論の力の素粒子のうち、質量を持たない方が、光子と呼ばれるものである、というのが律儀な言いかたなのかもしれません。

 ただ、光子のエネルギーは、容易に質量となり、また、その逆も容易に起きます。

 たとえば、陽子と電子が無限のかなたから近づいていき、水素原子を形成する場合、電子の軌道のエネルギー準位が変化すれば、光子の形でエネルギーが外に放出されます。その光子のエネルギーは、陽子と電子のなす系が、質量を失うこと(古典的には、ポテンシャルエネルギーを失うこと)で補われます。
 水素がイオン化して、陽子と電子とに別れる時は、この逆で、外からやってきた光子から、系は質量を得ることになります。これを相対論のような古典物理で説明する場合には、質量とエネルギーの等価性と言うわけですが、場の理論で、この質量獲得のメカニズムを説明するのは、かなり難しいことのようです。

 経路積分的に、光子が飛んでいく姿を思い浮かべた時、光子は、実は、あるときは陽電子-電子ペアであったり、場合によってはトップクオークと反トップクオークの対からなる中間子に「変身」している場合もありうるわけで、いつでも質量を持つ可能性をもっているわけです。

 これら「場の理論」でいう質量の獲得と、重力理論で言う質量とが、同等のものであるのは一般相対論の主張ではありますが、素粒子論レベル(重力子レベル)で、場の相互作用を簡便に言うことは、困難なことのようです。
 このあたりが、

 「なぜ、太陽の側を通った光は、曲がるの」
 「それは、重力が空間を曲げているからさ!」

という、禅問答のような、とおりいっぺんの説明では納得できない気持ちになる原因だと思います。

 また、「電荷」は、電磁気の力、すなわち光子を産むことのできる「能力」を示すものです。それ以上の説明は、現代の物理学者にはできていないように思えます。電子のように「内部構造を持たない粒子」が、電荷という性質を持つことは、実に不可思議な事だと思います。また光子は「電荷」を持たないため、更に子供の「光子」を直接産むことはできません。何か他の素粒子を経由することにより相互作用することになると思います。

 量子光学屋で、素粒子論は耳学問なんですが、とりあえず知ってるつもりのことだけ、書かせていただきます。

 古い話ですが、ヤン-ミルズ理論~電弱統一理論では、光子のうち弱い相互作用を司る量子が質量をもち、電磁気力を司る光子が狭い意味でのフォトンになったわけですから、光子が質量をもたないのではなく、電弱統一理論の力の素粒子のうち、質量を持たない方が、光子と呼ばれるものである、というのが律儀な言いかたなのかもしれません。

 ただ、光子のエネルギーは、容易に質量となり、また、...続きを読む

Q真空から素粒子とかエネルギーって本当に出てるんですか?

真空の何もない空間から、素粒子や
エネルギーが出てくると聞いた事があるんですが、
具体的には、何が出てくるんでしょうか?
詳しく教えてください。

また、規則性や法則性を以って、それらは、
現れるんでしょうか?
それとも、不規則にランダムに出てくるんでしょうか?

何卒、アドバイスのほどお願いいたします。

Aベストアンサー

 皆様が回答されておられる通りなのですが、私なりに回答してみます(実は、回答をどう書くか考えているうちにたくさんの回答が寄せられていました ^^;)。

>真空の何もない空間から、素粒子やエネルギーが出てくると聞いた事があるんですが、

 多分、量子論の不確定性原理から導かれる、対生成のことでしょう。不確定性原理というのは、今の場合、位置を正確に確定すればするほど、その位置でのエネルギーの大きさが確定しなくなるということです。
 つまり、原子などよりずっと小さい領域を物理的に解析してみると、そこでは大きなエネルギーが現れる可能性があるということです。このエネルギーにより素粒子がつくられます。つくられる素粒子は、普通の物質と反物質の対になります(これが「対生成」と呼ばれるゆえん)。
 なお、このような対生成で普通の物質と反物質ができても、すぐさま普通の物質と反物質が反応して消えてしまいます(対消滅といいます)。
 この対生成・対消滅により何らかのエネルギーなどが観測できるはずなのですが、今のところ、実際の観測では量子論から理論的に予想されるものよりはるかに小さい値しか得られていません(観測値は実質0とのことです)。

>具体的には、何が出てくるんでしょうか?

 理論的には、何でもでてくる可能性があるのですが、エネルギーの小さいものほど対生成がおきやすいので、ほとんどの場合、光子ができます(つまり光です)。光子の反物質は光子で、同じものなのですが、これもすぐ対消滅します。
 余談になりますが、対生成しても、対消滅が起きない場合があるという仮説があります。ホーキング博士が提唱しているもので、ホーキング輻射と呼ばれています。
 これは、ブラックホールの事象の地平面近くで対生成が起こったとき、対でできた一方の素粒子がブラックホールの強大な重力に引かれてブラックホールに落下し、残ったほうが宇宙空間に飛び出してくるというものです。残念ながら、これが観測されたことはまだなく、仮説の域を出ていません。

 さらに真空について踏み込んでみます。
 普通、真空というと宇宙空間のように何もない(厳密には星間物質がありますが、密度が小さいので今は無視します)空間を指します。しかし、量子論で突っ込んで考えた結果、観測できない素粒子で埋め尽くされているという仮説が出ています。この観測できない素粒子はヒッグズ粒子と呼ばれています(他に、ディラックが提唱した真空は観測できない電子で埋め尽くされているという「ディラックの海」という仮説もありますが、今は割愛します)。
 そこで、そのヒッグズ粒子がない空間が作れたとすると、それこそ本当の真空ということになります。そういう本当の真空の空間があるとすると、ヒッグズ粒子で埋め尽くされた普通の真空空間との間にエネルギーの差があることになり、エネルギーが取り出せるという仮説があります。
 ただ仮に仮説が正しいとしても、本当の真空を作るには膨大なエネルギーが必要とされており、現実にはできません。また、その真空から取り出せるエネルギーがどれくらいの量なのかについても諸説があって、未だに定まっていません。

 宇宙は現在膨張していることは観測事実として確定していますが、膨張の仕方については諸説あります。標準的な理論では、膨張の仕方は時間が経過すると、重力のせいで遅くなっていくとされています。しかし、宇宙の膨張の仕方が時間の経過とともに大きくなっていくと主張する物理学者も少なからずいます。
 つまり、宇宙が加速膨張しているということなのですが、もしそうだとすると、それが反重力のせいである可能性があります。つまり、反重力はあるのかも知れないということです。
 これらはまだまだ観測が不足で、盛んに議論はされているものの、確からしいところはわかっていません。

 皆様が回答されておられる通りなのですが、私なりに回答してみます(実は、回答をどう書くか考えているうちにたくさんの回答が寄せられていました ^^;)。

>真空の何もない空間から、素粒子やエネルギーが出てくると聞いた事があるんですが、

 多分、量子論の不確定性原理から導かれる、対生成のことでしょう。不確定性原理というのは、今の場合、位置を正確に確定すればするほど、その位置でのエネルギーの大きさが確定しなくなるということです。
 つまり、原子などよりずっと小さい領域を物理的に解...続きを読む

Q量子論と相対論はなぜ統一できないのか?

量子論と相対論の統一は難しいと言われますが、それはどのような点で難しいのでしょうか?問題点を教えていただければ幸いです。

Aベストアンサー

以下は「科学と技術の諸相」からの引用です。 
http://www005.upp.so-net.ne.jp/yoshida_n/qa_a82.htm#q485

「量子重力理論の難しさは、そもそも、どのような形式の理論を考えれば良いのか明らかでない点に根ざしています。
 1940年代の末に量子電磁気学が完成を見た後、重力場の量子化にチャレンジした物理学者は少なくありませんが、彼らの前に、さまざまな困難が立ちはだかりました。量子電磁気学の基本方程式は、外見上はマクスウェル理論と同じ形をしています。これは、マクスウェル理論を(ゲージ固定などの数学的テクニックを使って)そのまま量子化しても、量子効果が強く現れる短距離領域での振舞いが比較的穏やかで、いわゆる「くりこみの処方箋」によって対処できるからです。ところが、天文学的なスケールで重力場の振舞いを記述しているアインシュタイン方程式は、相互作用項に微分が含まれているため、短距離領域で場が激しく変動するようなケースでは、相互作用の大きさを求める積分が発散してしまい、「くりこみの処方箋」では何ともしがたくなります。くりこみとは、スケールを変えても基本方程式の形が変わらないことを前提とした手法ですから、これが使えないことは、量子重力理論の基本方程式が、アインシュタイン方程式とは全く違うものであることを意味します。「古典的な場の方程式をそのままにして量子化する」という従来のやり方が通用しないことが、量子重力理論を構築する際の最初のハードルでした。
 初期の研究者の中には、古典的な重力理論の枠組みを大きく変えずに、くりこみに代わる別の処方箋を開発して、この問題に対処しようとする人もいました。しかし、しだいに、そうした小手先の技法ではなく、より根本的な解決策が必要だと考えられるようになります。その背景には、重力場が他の場と異なった根源的なものだという認識があります。電磁場やクォーク場など通常の量子場は、固定された時間・空間の“内部”にあります。これに対して、重力場は、時空構造そのものを決定する役割を果たしており、それだけ、他の場よりも根源的なものだと言えるでしょう。くりこみの処方は、「短距離極限ではどうなるかわからないが、ある程度以上のスケールならば、理論的予測が可能な実効的理論を作れる」というものであり、これに代わる処方箋も、短距離極限には目をつぶることが多かったのですが、量子重力理論は、そうした暫定的なものではなく、短距離極限でも成り立つ“完全な”理論であることが要求されました。従来の場の理論は、その域にまで達していなかったのですから、理論に対する要求水準は、きわめて高いと言えます。
 さらに、理論の構築に当たって、実験データをもとに改良していくという方法が使えません。重力場に関する実験は、等価原理に関するものなど、実験室レベルでもいくつか行われていますが、量子重力理論の候補を選別していくだけのデータを提供してはくれません。将来、加速器でミニ・ブラックホールが造れるようになれば話は別ですが、現時点では、実験・観測データの手がかりのないまま、盲目的に突き進むしかありません。
 量子重力理論に関しては、具体的な理論の形もよくわからず、実験データも手助けにならないまま、長距離極限ではアインシュタインの重力理論と一致し、短距離極限でも理論が破綻しないという異様に厳しい要求だけが突きつけられているといった状況です。研究者は、とりあえず思いついた理論をいくつか試しています(例えば、ひもを量子化したときの式が重力場と似ていることをきっかけとして、超ひも理論という量子重力理論の一つの候補が作り上げられました)。しかし、長距離極限の近似であるアインシュタイン理論が数学的にかなり難解な理論であったわけですから、完全な理論であるべき量子重力理論は、それに輪をかけて難解になっています。実験データとすぐに比較できないので、研究者は、こうした理論を数学的にあれこれひねりまわしながら、ブラックホールや初期宇宙に適用し、理論の良し悪しを決定しようとしています。通常の科学研究ならば、半ダース以上の候補理論についてこうした研究を行い、その中から実験・観測のふるいにかけて残るものを選び出すはずですが、量子重力理論は数学的にあまりに難しく、優秀な研究者を消耗するだけなので、それもままなりません。研究がなかなか進まない--順調に進んでいると主張する人も一部にいますが--のは、ある意味で、当然のことなのです。 」

参考URL:http://www005.upp.so-net.ne.jp/yoshida_n/qa_a82.htm#q485

以下は「科学と技術の諸相」からの引用です。 
http://www005.upp.so-net.ne.jp/yoshida_n/qa_a82.htm#q485

「量子重力理論の難しさは、そもそも、どのような形式の理論を考えれば良いのか明らかでない点に根ざしています。
 1940年代の末に量子電磁気学が完成を見た後、重力場の量子化にチャレンジした物理学者は少なくありませんが、彼らの前に、さまざまな困難が立ちはだかりました。量子電磁気学の基本方程式は、外見上はマクスウェル理論と同じ形をしています。これは、マクスウェル理論を(ゲージ固...続きを読む

Q距離と時間は同じ。1秒=30万km。これは「プランク距離=プランク時間

距離と時間は同じ。1秒=30万km。これは「プランク距離=プランク時間」と同じことを言っているのですか?

時間は未来と過去しかない1次元ですが、距離はあらゆる方向へ行けるので次元が無限にありますよね。
2つめの質問は、
1秒=30万kmと言われても、どっちに30万km?と思いますが、これはどのようにとらえたらよいのでしょうか。

私は物理はほとんど勉強していなくて(高校1年でボールの落下をやった記憶があるだけ)、NEWTONやブルーバックスなどの科学読み物を読んでいる程度です。観点がずれていたらすみません。

時間というものは真には存在しない、ただ私たちが時間があるように感じているだけ、という話をどこかで読んだ気がします。ファインマン図、量子コンピュータ、多世界解釈、光のスリット実験、という、まるで未来の予知や時間の逆行のような不可思議な現象の話も読んで、私は、本当は全世界のプランク時間ごとの断片的な状態が散らばっているのが宇宙で、私たちはそれを3秒前、2秒前、1秒前、と、順番にしか知覚できない、という風にイメージしました。
3つめの質問は、
ブルーバックスとNEWTON以外で、もっと理解を深めるためにおすすめの本やサイトを教えてください。

よろしくお願いします。

距離と時間は同じ。1秒=30万km。これは「プランク距離=プランク時間」と同じことを言っているのですか?

時間は未来と過去しかない1次元ですが、距離はあらゆる方向へ行けるので次元が無限にありますよね。
2つめの質問は、
1秒=30万kmと言われても、どっちに30万km?と思いますが、これはどのようにとらえたらよいのでしょうか。

私は物理はほとんど勉強していなくて(高校1年でボールの落下をやった記憶があるだけ)、NEWTONやブルーバックスなどの科学読み物を読んでいる程度です。観点がずれていたらすみ...続きを読む

Aベストアンサー

>>時間は未来と過去しかない1次元ですが、
 ホーキング博士の本などには、虚時間などという概念が出てきます。興味があれば調べてみてはどうでしょう。

>>距離はあらゆる方向へ行けるので次元が無限にありますよね。
 宇宙空間は三次元空間で、有限次元ではないでしょうか。

>>時間というものは真には存在しない・・・略
 時間については、エントロピーがどうのこうとかいう話があります。

>>3つめの質問は、ブルーバックスとNEWTON以外で、もっと理解を深めるためにおすすめの本やサイトを教えてください。
 大学の数学や物理の教科書はどうでしょうか。理論的裏付けを理解しようとすれば、数学的考察は欠かせないと思います。


人気Q&Aランキング