痔になりやすい生活習慣とは?

a(b二乗−c二乗)+b(c二乗−a二乗)+c(a二乗−b二乗)
の、因数分解を教えてください

質問者からの補足コメント

  • その答えを綺麗にするとどうなりますか?

      補足日時:2016/05/24 21:55

このQ&Aに関連する最新のQ&A

A 回答 (3件)

因数分解せよ。

ということは暗に「因数分解できる」と言っている。
★折角、web標準のUTF-8の掲示板なので、・・

a(b² - c²) + b(c² - a²) + c(a² - b²)

とかける。
 とりあえず展開して、文字順次数順に整理しておく。
 = ab² - ac² + bc² - a²b + a²c - b²c
 = - a²b + a²c + ab² - ac² + bc² - b²c
 = (c - b)a² + a(b² - c²) + bc² - b²c 後で役立つ

は簡単な因数で割れるはず。
a = b とすると
a(b² - c²) + b(c² - a²) + c(a² - b²)
= a(a² - c²) + a(c² - a²) + c(a² - a²)
= a³ - ac² + ac² - a³ + a²c - a²c
= a³ - a³ - ac² + ac² + a²c - a²c
  ̄ ̄ ̄=0  ̄ ̄ ̄=0  ̄ ̄ ̄=0
= 0
 よって、(a - b)は因数
同様に、
b = c とすると
a(b² - b²) + b(b² - a²) + b(a² - b²)
  ̄ ̄ ̄=0  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄=0
= 0
 よって、(b - c)も因数
同様に
a=c
a(b² - c²) + b(c² - a²) + c(a² - b²)
= a(b² - a²) + b(a² - a²) + a(a² - b²)
= ab² - a³ + a²b - a²b + a³ - ab²
= ab² - ab² + a³ - a³ + a²b - a²b
= 0
 よって、(a - c)も因数
わかっている因数をすべて掛け合わせると
(a - b)(b - c)(a - c)
展開すると、
 = (ab - ac - b² + bc)(a - c)
 = a²b - abc - a²c + ac² - ab² + b²c + abc - bc²
 = - a²c + a²b + abc - abc + ac² - ab² + b²c - bc²
 = - a²c + a²b + ac² - ab² + b²c - bc²
 = (b - c)a² + (c² - b²)a + b²c - bc² (1)
これは、正負が変わるだけで
先の
 (c - b)a² + a(b² - c²) + bc² - b²c
と同じ
 なのでこれ以上因数はない。あれば、(1)の式で割ればでてくる
    • good
    • 1

a(b^2-c^2)+b(c^2-a^2)+c(a^2-b^2)


=a(b^2-c^2)+bc^2-ba^2+ca^2-cb^2
=a(b^2-c^2)+bc^2-(ba^2-ca^2)-cb^2
=a(b-c)(b+c)-(cb^2-bc^2)-a^2(b-c)
=a(b-c)(b+c)-bc(b-c)-a^2(b-c)
=(b-c)(a(b+c)-bc-a^2)
=(b-c)(ab+ac-bc-a^2)
=(b-c)(ab-a^2+ac-bc)
=(b-c)(a(b-a)-c(b-a))
=(b-c)(a-c)(b-a)
=(a-b)(b-c)(c‐a)
    • good
    • 1

a(b^2 - c^2) + b(c^2 - a^2) + c(a^2 - b^2) = (c - b)(a - b)(a - c

)
    • good
    • 1

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q固定観念?固定概念?

固定観念 と 固定概念 の違いを教えてください。

よろしくおねがいいたします。

Aベストアンサー

固定観念=凝り固まった思い込み。
固定概念=旧来からの見方・考え方。

差異は、前者が各自の内に存在し、後者が各自の外に存在することですかね!なお、固定概念は、当然に、各自の内にも取り込めます。

Q数学 計算式教えて下さい!(a+b+c)二乗−(b+c−a)二乗+(c+a−b)二乗−(a+b−

数学 計算式教えて下さい!
(a+b+c)二乗−(b+c−a)二乗+(c+a−b)二乗
−(a+b−c)二乗

途中の計算式、説明をお願いします。
来週、期末テストの為、助けて下さい
m(_ _)m

Aベストアンサー

(a+b+c)^2 -(b+c-a)^2   を  {(b+c)+a}^2 -{(b+c)-a}^2   に変形し平方の差の形にする

同様に (c+a-b)^2 -(a+b-c)^2   を  {(a+b)+z}^2 -{(a+b)-c}^2 にすると

A^2-B^2=(A-B)(A+B)から            注 ^2は2乗を示します。

左の2項が  (b+c+a-b-c+a)(b+c+a+b+c-a) 整理すると 2a(2b+2c)

右の2項が  (a+b+c-a-b+c)(a+b+c+a+b-c) 整理すると 2c(2a+2b)

まとめると 与式=2a(2b+2c)+2c(2a+2b)      整理すると  8(ab+ac)

参考までに。


人気Q&Aランキング