
No.3ベストアンサー
- 回答日時:
下記の回答者さんも書かれているように、(x + y + z)^5 を展開した項は、
C(x^a)(y^b)(z^c)
となり、a, b, c は 0以上の整数で、
a + b + c = 5
になります。
ということは、たとえば「項の要素は、x→y→z の順に書く」と決めれば
xxxxx
xxyyz
xxxzz
yyzzz
のように、すべての項は
x(a=0~5) (区切り1) y(b=0~5) (区切り2) z(c=0~5) (ただし a+b+c=5)
と書けます。
この「x, y, z の組合せ」が何種類あるかは、「x,y,z が合計5個」と「区切り2個」の「合計7個」を1列に並べる「並べ方」と考えることができます。
a=0(x が 0 個)のときには「区切り1」が「1番目」に来ますし、a=5(x が 5 個)のときには「区切り1」が「6番目」、「区切り2」が「7番目」に来て b=c=0 です。
それが「なぜ〇が5個で|が2個なのか」ということです。
(「〇〇〇〇〇||」なら a=5, b=c=0 つまり「xxxxx」だし、「〇〇|〇|〇〇|」なら a=2, b=1, c=2 の「xxyzz」です)
ということで、「7つの中から、区切り線2つを何番目と何番目に置くか」という「7つから2つを選ぶ組合せの数」が求めるものになるわけです。(区切り線は、左に置いた方が「x と y の境い目」、右に置いた方が「y と z の境い目」になるので区別しません)
なので「x,y,z が合計5個」と「区切り2個」の「合計7個」の中の「どこに区切り線を2つ置くか」の組合せの数で、「(x + y + z)^5 を展開した項の種類」の数を計算できるわけです。
No.2
- 回答日時:
nHk は、嫌う人が多いので、あまり使わないほうがいいです。
実際に展開してみれば判りますが、(x+y+z)^n を展開して出てくる項は、
どれも、(定数)(x^a)(y^b)(z^c) ただし a,b,c は 0 以上の整数で a+b+c=n
という形をしています。
だから、5 を 0 以上の整数 a,b,c の和で表す表し方の個数
を求めればよいのです。
全部書きだしてしまったらどうですか?
5 = 0+0+5 = 0+1+4 = 0+2+3 = 0+3+2 = 0+4+1 = 0+5+0
= 1+0+4 = 1+1+3 = 1+2+2 = 1+3+1 = 1+4+0
= 2+0+3 = 2+1+2 = 2+2+1 = 2+3+0
= 3+0+2 = 3+1+1 = 3+2+0
= 4+0+1 = 4+1+0
= 5+0+0.
個数は、6+5+4+3+2+1 = 21 です。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 中3多項式置き換えによる展開と、因数分解について ①(x+y-2)^2 ②(x-y+5)(x-y-5
- 数2の二項定理の問題です!教えてください! Q、次の展開式における【⠀】内の項の係数を求めよ。 (X
- 群数列の問題がわかりません。どなたか教えてください… 【問題文】 1から順に自然数を並べて, 下のよ
- マクローリン展開のn次の係数を求める問題です。 考えてみたのですが、分からず困っています。 x/(1
- 【 数I 展開の工夫 】 問題 (x+1)(x-2)(x²-x+1)(x²+2x+4)を展開 せよ。
- マクローリン展開のn次の係数を求めよと言う問題です。 (x^2+2)e^x, n=5 どのようにして
- 【 数学 一次関数 】 問題 f(1)=-7,f(3)=-13を満たす1次関数f(x)を求めよ。 疑
- 高校数学 初歩的ですが。 数学で、〜〜をみたす○○を求めよ。 と問われた時、 求める〇〇は〜〜の必要
- 中一数学の【最大公約数と最小公倍数】の問題です。 1問だけでも教えていただけると嬉しいです。 (1)
- 多変数関数の微分とテイラー展開について
このQ&Aを見た人はこんなQ&Aも見ています
-
プロが教える店舗&オフィスのセキュリティ対策術
中・小規模の店舗やオフィスのセキュリティセキュリティ対策について、プロにどう対策すべきか 何を注意すべきかを教えていただきました!
-
項の個数の出し方
数学
-
高校1年生です。数Aの問題教えてください!
数学
-
多項定理
数学
-
-
4
問)8人の生徒を2人、3人、3人の3つのグループに分ける分け方は何通り? という問題の答えの「3人の
大学受験
-
5
6人を3つの部屋ABCに入れる方法は何通りあるか?ただし各部屋には少なくとも1人入っている。 この問
中学校
-
6
数Aです。 X+Y+Z=10を満たす、次のようなX、Y、Zはの組は何通りあるか。 (1)X、Y、Zは
数学
-
7
4桁の自然数nの千の位、百の位、十の位、一の位
数学
-
8
5桁の整数nにおいて,万の位,千の位,百の位,十の位,一の位の数字をそれぞれa,b,c,d,eとする
数学
-
9
「長たらしむ」の訳し方を教えてください。
日本語
-
10
∈と⊂の違いは何ですか?
数学
-
11
男子3人、女子4人が並ぶ。女子のうち2人だけが隣り合うように7人が1列に並ぶのは何通りあるか。 とい
数学
-
12
1つのサイコロを3回ふり、出た目の数を順にa,b,cとする。 (1)a<b<cとなる確率を求めよ 解
中学校
-
13
数学A A,B,C,D,E,F,G,Hの8文字を無造作に横一列に並べる時、AはBより左で、BはCより
高校
-
14
数学A 円順列の問いです。 6個の宝石から4個取り出し、並べる方法は何通りあるか。 画像は解答です。
数学
-
15
【図(画像参照)のように、正方形を、各辺の中点を結んで5つの領域に分ける。隣り合った領域は異なる色で
数学
-
16
平面上において、4本だけが互いに並行で、どの3本も同じ点で交わらない10本の直線の交点の個数は全部で
数学
-
17
確率の問題です。 赤玉四個、白玉3個、青玉 2個が入った袋から同時に3個を取り出すとき、次の確率を求
数学
-
18
白玉5個、赤玉3個が入っている袋があります。 「ここから2個の玉を同時に取り出すとき、白玉1個、赤玉
数学
-
19
x,yを正の数とする。x,3x+2yを少数第一位で四捨五入すると、それぞれ6,21になるという。yの
高校
関連するカテゴリからQ&Aを探す
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
小三算数です。 0➗4=0 4➗0=0...
-
どうすればこの式になるんですか
-
左辺から右辺にするにはどう計...
-
どうすれば上の式を下の式に変...
-
生物基礎 免疫 免疫のうち、T細...
-
4行目でシグマの計算が1・(3n-1...
-
「気温20度で湿度88%の空気1㎥...
-
画像の問題1.1の(4)の求め方...
-
xかけるxって答えなんですか?
-
X2乗-1を公式を利用する因数...
-
(√2ー√6)の2乗の答えが、2+4√3...
-
一次不定方程式の問題を解いた...
-
(2分の3)の2乗と(2分の3の2...
-
時速40㎞を分速に直すとどのく...
-
次の等式を満たす整数x,yの組を...
-
6年算数の問題で同じ種類のくぎ...
-
1から9までの9個の数字から異な...
-
数学についていくつか質問させ...
-
x3乗-3x-2の計算方法を教...
-
6➗8= 答え 何あまり何 で答えて...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
6➗8= 答え 何あまり何 で答えて...
-
xかけるxって答えなんですか?
-
ケアレスミスを減らしたい。~...
-
小三算数です。 0➗4=0 4➗0=0...
-
1から9までの9個の数字から異な...
-
(2分の3)の2乗と(2分の3の2...
-
中1です。 この問題がわかりま...
-
数学の問題を教えてください。
-
高校一年化学。式量のところです。
-
因数分解の質問をさせて頂きま...
-
(4x+9)-(8x+3)という問...
-
数1について質問です。
-
時速40㎞を分速に直すとどのく...
-
X2乗-1を公式を利用する因数...
-
一次方程式と二次方程式の連立...
-
小学六年生の問題です。 高さ2m...
-
数学A (x+y+z)^5の展開式の異な...
-
(√2ー√6)の2乗の答えが、2+4√3...
-
面接で、どうして〇〇県を志望...
-
1500円に3/4を乗じるとは!?...
おすすめ情報