A 回答 (5件)
- 最新から表示
- 回答順に表示
No.5
- 回答日時:
中央のサイコロの上の面と右の面の数字は何か?
「接する面の数の和が3箇所とも同数」という条件から
上の面の数のほうが右の面の数より 3 - 1 だけ大きい と判る。
右の展開図を眺めて考えれば、そうなるような配置は
上の面 = 4, 右の面 = 2, (よって 左の面 = 5) しかない。
「接する面の数の和」は 4 + 4 = 2 + 6 = 8 であり、
左のサイコロの右の面は 8 - 5 = 3 と判る。
よって、A = 2.
No.4
- 回答日時:
区別するために四つのサイコロに名前をつけます。
上に乗っているサイコロを①、下のサイコロを左から②、③、④としておきます。次に、サイコロの六つの面も、その面が向いている方向にあわせて、それぞれ呼び名を上、下、右、左、手前、奥のように決めておきます。
こうすると、例えば、①のサイコロの上は3、②と③のサイコロの手前は1、④のサイコロの右は1、と言うことになります。
さて、一つのサイコロの中で相対する面の目の和は7ですので、①のサイコロの下は4、②と③のサイコロの奥は6、④のサイコロの左は6であるはずです。
ここで③のサイコロと④のサイコロが接する部分について考えてみます。④のサイコロの左は6だとわかっています。③のサイコロの右は何かわかりませんが、③のサイコロの手前が1、奥が6ですから、この二つを除いた2~5のいずれかであるはずです。すると、③と④の接する部分の目の合計は、2+6から5+6のうちのいずれか、つまり8~11のいずれかです。
次に③のサイコロと①のサイコロが接する部分について考えてみます。①のサイコロの下は4だとわかっています。③のサイコロの上は何かわかりませんが、先ほどと同様に2~5のいずれかであるはずです。すると、③と①の接する部分の目の合計は、2+4から5+4のうちのいずれか、つまり6~9のいずれかです。
③と④が接する面の合計は8~11、
③と①が接する面の合計は6~9、
どちらも同じ数なのですから、接する面の合計は、8か9のどちらかです。
もし接する面の合計が8であるとしたなら、③のサイコロの上は4、左は5、手前は1、右は2であるはずです。これはサイコロの展開図に当てはまります。(展開図を左に90°回転させると見やすいかもしれません。)
もし接する面の合計が9であるとしたなら、③のサイコロの上は5、左は4、手前は1、右は3であるはずです。これはサイコロの展開図に当てはまりません。(展開図を左に180°回転させると見やすいかもしれません。)
よって接する面の目の合計は8だとわかりました。
最期に②のサイコロについて考えてみます。③のサイコロの左が5だとわかっていたので、②のサイコロの右は3、左は4だとわかります。
左が4、手前が1、右が3となるように置いたときに、上に来る目を展開図から探せば、それが答えになるでしょう。
よって、答えは、2、であるはずです。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
つい集めてしまうものはなんですか?
人間誰もは1つ「やたらこればかり集めてしまう」というものがあるもの。 あなたにとって、つい集めてしまうものはなんですか?
-
秘密基地、どこに作った?
小さい頃、1度は誰もが作ったであろう秘密基地。 大人の今だからこそ言える、あなたの秘密基地の場所を教えてください!
-
とっておきの手土産を教えて
お呼ばれの時や、ちょっとした頂き物のお礼にと何かと必要なのに 自分のセレクトだとついマンネリ化してしまう手土産。 ¥5,000以内で手土産を用意するとしたらあなたは何を用意しますか??
-
自分のセンスや笑いの好みに影響を受けた作品を教えて
子どもの頃に読んだ漫画などが その後の笑いの好みや自分自身のユーモアのセンスに影響することがあると思いますが、 「この作品に影響受けてるな~!」というものがあれば教えてください。
-
「お昼の放送」の思い出
小学校から中学校、ところによっては高校まで お昼休みに校内放送で、放送委員が音楽とかおしゃべりとか流してましたよね。 最近は自分でもラジオができるようになって、そのクオリティもすごいことになっていると聞きます。
-
なぜここでもう一度確かめの計算をしているのでしょうか?
高校
-
苦手科目数学
高校
-
()ないとダメですか?
高校
-
-
4
なんでそうなるのか下の図を見ても納得いきません。 点がその範囲にあったとしても中心の点は座標を跨ぐこ
高校
-
5
これはどうやって気づくのですか?
高校
-
6
試合で5回、負ける確率の求め方を教えて下さい。
高校
-
7
ここはなぜ空欄になっているのでしょうか?
高校
-
8
数学について質問です。 必要条件、十分条件がよくわかりません。 問題文から解が1つ以上ある事が確定し
高校
-
9
多角形と面積
大学受験
-
10
この変形はどうやってますか?
高校
-
11
物理 親亀子亀の問題 この問題の解き方を教えてください。 解答は合っています。
高校
-
12
この問題でPQ=r1+r2になる理由がわからないです。わかる方教えてください
数学
-
13
√とはなんですか? なぜ√5は2と3の間なのですか?
高校
-
14
簡単な比の問題教えてください
数学
-
15
三角不等式
数学
-
16
(b+c)/a=(c+a)/b=(a+b)/cのとき式の値を求めよ。 分母は0ではないからabc≠
数学
-
17
写真の問題の(2)の解き方を教えてください 答えは 6×10の13乗 になります。
高校
-
18
今は、割合が入った数学の問題の解くため、小学生から大学生まで、「く・も・わ」という図が使われているの
数学
-
19
n 個のサイコロを同時に振る。 ただし、nは正の整数とする。 出た目の数の積が6の倍数となる確率を求
数学
-
20
本を買わないでネットで
数学
関連するカテゴリからQ&Aを探す
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/12】 急に朝起こしてきた母親に言われた一言とは?
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・好きな「お肉」は?
- ・あなたは何にトキメキますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
大中小3個のサイコロを、同時に...
-
下の図において、x、yの値を、...
-
下の図において、点I は△ABCの...
-
【問題】 右の図のように、AE=2...
-
0≦θ≦2πのとき、tan(θ-π/3)=√3を...
-
下の図において、αを求めよ。...
-
右の図の△ABCは∠B=90°の直角三...
-
△ABCにおいて(b+c):(c+a):(a+b)...
-
0°≦θ≦180°で √3sinθ=-cosθを...
-
【問題】 △ABCにおいて、AB=7、...
-
0.1.2.3.4.5の6個の数字から異...
-
次のような△ABCについて、 3辺...
-
数学II この二項定理の問題の解...
-
a1=0 a2=2 an+2 -3an+1 +2an...
-
x^2+y^2=1のとき、x^2-y^2+2xの...
-
△ABCにおいて、a=3、b=6、c=7の...
-
白玉6個、赤玉4個の入った袋が...
-
三角比について
-
次のような△ABCにおいて、 残り...
-
次の方程式、不等式を解け。ただ...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
大中小3個のサイコロを、同時に...
-
0.1.2.3.4.5の6個の数字から異...
-
下の図において、点I は△ABCの...
-
下の図において、x、yの値を、...
-
0≦θ≦2πのとき、tan(θ-π/3)=√3を...
-
1個のサイコロを4回投げて出た...
-
aは定数とする。関数y=x^2-2ax+...
-
積分 ∫ (logx/x)^2 dx の解き方...
-
右の図の△ABCは∠B=90°の直角三...
-
赤玉6個、白玉3個の入った袋の...
-
△ABCにおいて、a=3、b=6、c=7の...
-
x^2+y^2=1のとき、x^2-y^2+2xの...
-
AB=10、BC=7、CA=4である△ABCに...
-
aは正の定数とする。関数y=-x^...
-
当たりくじ4本を含む13本のくじ...
-
白玉6個、赤玉4個の入った袋が...
-
次のような△ABCについて、 3辺...
-
次のような△ABCにおいて、 残り...
-
この問題が分かりません 教えて...
-
20%のスクロース水溶液200g中...
おすすめ情報