
「半角の公式」は有りますよね。それの1/3版についてです。
「1/3倍角の公式って有りますか?」
と教師に質問したところ、「聞いたこと無い。」
と言われました。少し、調べましてみましたが、やはり見つかりませんでした。
存在するんでしょうか。
存在するのであれば、計算式が知りたいです。(サイトでも良いです。。)
存在しないというのであれば、
(a+bi)^(1/3) を A + Bi という形に変形する事から導き出せそうですが、
無理なのでしょうか。
高校生にも分かるように書いて頂けると嬉しいです。
(カルダノの解法は分かります。)
No.2ベストアンサー
- 回答日時:
No.1チョンボです。
X=((c-√[c^2-1])^(1/3)+(c+√[c^2-1])^(1/3))/2
だけが実解じゃないですね。残りの2つの解も必要です。
X=((i√3-1)(c-√[c^2-1])^(1/3)-(i√3+1)(c+√[c^2-1])^(1/3))/4
X=((i√3-1)(c+√[c^2-1])^(1/3)-(i√3+1)(c-√[c^2-1])^(1/3))/4
はい。有り難う御座います。
しかし、
解が3つとなると、sin(θ/3)の解はどれであるかを
どうやって判断すればいいのでしょうか。
(お礼が質問に成ってしまった。)
No.5
- 回答日時:
siegmund です.
> 解が3つとなると、sin(θ/3)の解はどれであるかを
> どうやって判断すればいいのでしょうか。
θに関する他の情報があれば,それとつじつまが合うように選ぶほかありません.
情報がなければ,判断はできません.
x^2 = 1 のとき,x = +1,-1,のどちらか判断するのと同じようなことです.
前の話の繰り返しみたいなことになりますが,
例えば,θ= 3φ としましょう.
φ(1) = π/12 すると,θ(1) = π/4
φ(2) = φ(1) + (2/3)π = (3/4)π とすると θ(2) = (π/4) + 2π
φ(3) = φ(1) + (4/3)π = (17/12)π とすると θ(3) = (π/4) + 4π
明らかに,
sinθ(1) = sinθ(2) = sinθ(3) です.
つまり,基本周期の 0≦φ≦2π の間の (2/3)πずつずれた3つのφの値に対して
sin(3φ) は同じ値になってしまうわけです.
前にも書きましたが,半角公式でも
sin(θ/2) = ±√{(1-cosθ)/2}
で,同じような事情(頭の複号)がありますので,ご注意下さい.
遅くなりました。
はい。僕の何でもない勘違いでした。
二次方程式の場合は正か負のどちらかで、判別は簡単だけど、
三次方程式の場合、ややこしいかな?と思ったんですが、
なんでもありません。
本当にありがとう御座いました。
No.4
- 回答日時:
さて、ご質問の主旨からはいささか外れそうだけれど、どうも中途半端ですのでご参考までに。
●高校では習わないかも知れないけれど重要な公式に
exp(iθ) = cosθ + i sinθ (オイラーの公式)
というのがあります。(exp(x)とはe^xのことです。)
これを使うといとも簡単です。
exp(-iθ) = cos(-θ) + i sin(-θ)= cos(θ) - i sin(θ)
だから
cosθ = (exp(iθ)+exp(-iθ))/2
よって、
cos(aθ) = (exp(iaθ)+exp(-iaθ))/2
= ((exp(iθ))^a+(exp(-iθ))^a)/2
= ((cosθ + i sinθ)^a+(cos(θ) - i sin(θ))^a)/2
また、
i sinθ = (exp(iθ)-exp(-iθ))/2
よって
sin(aθ) = ((cosθ + i sinθ)^a-(cos(θ) - i sin(θ))^a)/(2i)
です。
●さてこの式が実際の計算の役に立つのかどうか、ということになりますと、
「複素数のa乗ってどうやって計算するんでしょう?」
という所が大問題ですね。これはaが小さい自然数nの場合やa=1/(2^n)の場合には
(cos(x)+i sin(x))(cos(x)-i sin(x))=1
が効いて計算できそうな式にまとまりますけど、一般にはそうは行かず、
(cosθ + i sinθ)^a = exp(iaθ) = cos(aθ) + i sin(aθ)
と変形して計算する。なんだ、これじゃ元の黙阿弥です。
という訳で、一般の「a倍角公式」ってのは実用性には欠けている。単にcos(aθ), sin(aθ)をcosθ,sinθを使って表した、という以上の意味を持っていないから、「公式」とは呼ばないのでしょう。
ありがとうございます。
>という訳で、一般の「a倍角公式」ってのは実用性には欠けている。
>単にcos(aθ), sin(aθ)をcosθ,sinθを使って表した、という以上の意味を持っ
>ていないから、「公式」とは呼ばないのでしょう。
はい。僕もそう思います。オイラーの公式も知っています。
ただ、「1/3倍角公式」は根号で表せる(という事が分かった)ので、例えば、sin5度の値がルートを使った式で表せるという事で、そういう意味で数学的に価値があるのではないでしょうか。
何はともあれ、
たびたび、有り難う御座います。
No.3
- 回答日時:
stomachman さん,ちょっと手がすべったようです.
実係数三次方程式
(1) t^3 +3pt +q = 0
の判別式 D は
(2) D = -(q^2 + 4p^3)
で,
D>0 なら相異なる3実根,
D=0 なら重根があり全部実根,
D<0 なら1実根と2虚根
です.
(3) 4X^3-3X-c = 0
と比べると,p=-1/4,q=-c/4 ですから
(4) D = (1/16)(1-c^2)≧0
となり,重根も含めることにして3実根があります.
これは三角関数の周期性と関係があります.
例えば,sinθ=1 としたとき,θは
(a) θ(1)=π/2,(π/2)±6π,(π/2)±12π,(π/2)±18π,......
(b) θ(2)=(π/2) + 2π,(π/2)+ 2π±6π,(π/2)+ 2π±12π,...
(c) θ(3)=(π/2) + 4π,(π/2)+ 4π±6π,(π/2)+ 4π±12π,...
の可能性があります.
つまり
(a) θ(1)/3=π/6,(π/6)±2π,(π/2)±4π,(π/2)±6π,......
(b) θ(2)/3=(5/6)π,(5/6)π±2π,(5/6)π±4π,.....
(c) θ(3)/3=(3/2)π,(3/2)π±2π,(3/2)π±4π,.....
で,
sinθ(1) = 1/2
sinθ(2) = 1/2
sinθ(3) = -1
になります.
sinθ(1)=sinθ(2) になっているのは sinθ=1,すなわち c=1 としたので,
判別式が D=0 になっていることと符合します.
このような話を逆に使って,3次方程式(3)の3実根を三角関数で表す方法も知られています.
似たような話は半角公式でもあるわけで,
例えば
sin(θ/2) = ±√{(1-cosθ)/2}
で,複号はθがどの象限にあるかによって適切に選ばないといけません.
今の場合はこの事情が多少複雑になったのです.
今アップしようとしたら stomachman さんご自身の訂正が出ていました.
書いちゃったので,そのままアップします.
丁寧に有り難う御座います。
しかし、
stomachman にも聞きましたが、符号・・・というか3つのうちどの解を選べばよいのでしょうか?
No.1
- 回答日時:
(sinθ)^3 = (-sin3θ+3sinθ)/4
(cosθ)^3 = (cos3θ+3cosθ)/4
だから、x=3θと書けば
(sin(x/3))^3 = (-sin(x)+3sin(x/3))/4
(cos(x/3))^3 = (cos(x)+3cos(x/3))/4
です。
sineの方は、X= sin(x/3), c=-sinxとおく。
同様にcosineの方も、X= cos(x/3), c=cos(x)とおく。するとどちらも同じ方程式
4X^3-3X-c = 0
で表せます。この三次方程式は
X=((c-√[c^2-1])^(1/3)+(c+√[c^2-1])^(1/3))/2
という実解および二つの複素数解を持ちます。
これが(1/3)倍角公式ってことです。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 三角関数の2倍角の公式は加法定理の公式をどう変形?したら作れるのでしょうか 4 2022/06/11 14:39
- 数学 数学3の微分法・対数関数の導関数に関しての質問です。 [ ] は絶対値を表しています。 y=log[ 3 2022/05/24 14:07
- 数学 8 x^3 - 6 x + 1 3 2022/11/22 16:55
- 国家公務員・地方公務員 横浜市の公務員試験 大学卒業程度 事務を受けるつもりのものです 第二次、第三次試験と面接がありますが 1 2022/06/07 07:42
- 数学 実数同士の対応における対角線論法について 6 2023/07/08 17:01
- 数学 割り算の合計について 6 2022/06/13 00:57
- 物理学 面積速度一定の法則を(1/2)r v sinθを使って証明する方法 2 2023/06/25 12:43
- 数学 ある方から 「一応 「①の被積分関数の 1/(z'-z) の部分を以下のように、等比級数 の公式を使 3 2023/02/16 05:30
- その他(プログラミング・Web制作) プログラミングって本来数学的な計算をする為のものではないのですか? 学校で配られたFortran90 11 2022/08/25 22:14
- 物理学 大学物理に詳しい方に質問です。 ラザフォードたちが実験で知りたかったことは衝突パラメータbと原子核の 1 2023/03/16 03:39
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
0≦θ≦2πのとき、sin2θ+cosθ=0の...
-
日本数学オリンピック2000年予...
-
解答の途中式です。 √3sin2x−co...
-
【至急】数llの三角関数の合成...
-
高校数学、図形量の最大最小問題
-
数学の関数極限の問題を教えて...
-
sinθ―√3cosθ=a(θ+α)の形にした...
-
面積
-
数学の問題教えてください
-
渦巻きの数式を教えてください...
-
微分積分の二重積分についての...
-
arctanのフーリエ級数展開について
-
ベクトル解析の面積分
-
高校数学
-
次の問題の解法を教えてください…
-
積分の計算について
-
三角関数 何故sinに-がついてい...
-
sin(π+x)は、-sinx になりますか?
-
なんで4分の7πではなく −4分のπ...
-
Scilabの逆正接のatanに関する...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
0≦θ≦2πのとき、sin2θ+cosθ=0の...
-
数学の関数極限の問題を教えて...
-
日本数学オリンピック2000年予...
-
cos{θ-(3π/2)}が-sinθになるの...
-
f(x)=√2sinx-√2cosx-sin2x t...
-
正弦波の「長さ」
-
離散フーリエ変換(DFT)の実数...
-
sinθ―√3cosθ=a(θ+α)の形にした...
-
渦巻きの数式を教えてください...
-
台形波のフーリエ級数
-
sinとcosのおもしろい性質を見...
-
なんで4分の7πではなく −4分のπ...
-
数Ⅲ 複素数平面について質問で...
-
高1 数学II三角関数
-
ベクトル場の面積分に関してです
-
三角関数
-
教えてください!数学の問題です
-
高校数学
-
数学の問題教えてください
-
0≦x<2πの範囲で関数y=-√3sin...
おすすめ情報