No.5ベストアンサー
- 回答日時:
このような手順で設計できるものは、かなり簡素な規模の設計に限られると思います。
どちらかといえば学生用の練習問題の範囲かと思います。その意味で、ほかの方の回答にもあるように、回路の冗長度(余計な部分)を取り除くのは練習として重要です。たとえば「NOT(NOT(NOT(NOT(A))))」を単に「A」と書くようなものです。しかし、真理値表だけで回路が書けるのは時間とともに状態が変化することを考慮していないのではないでしょうか。もちろん時間変化にともなう状態変化を真理値表で記述することは可能ですが、得策とは思えません。
もし、簡単な真理値表であれば、逆にいうと、「真理値表から実際の回路を作ることが目的」であれば、「論理式の導出」の段階も必要ないこともあります。たとえば、真理値表そのものを「ROM・テーブル」にしてしまうものです。実際の回路設計の中でも部分的にこのような方法を採用することがあります。この方式は、「論理式の導出」と「論理式の簡略化」をしていないので。、出来上がった論理回路としては「冗長(無駄な回路だらけ)」です。
回路の動作速度など、さまざまな条件を考慮して、必要とする高い周波数まで回路動作が不安定にならないような気配りをしてある回路設計であれば、冗長な回路を含めることも現実にはたくさんあります。
最後に一言付け加えます。論理回路の設計手順にはさまざまな方法があり、目的とする「機能」を数式やプログラム言語のようなもので記述して、ICを開発することがほとんどです。そのなかには「インバータ」や「アンド・ゲート」などといったものは見かけ上どこにも出てきません。また、はじめから、真理値表などもありません。たとえば、インテルのペンティアム・プロセッサを真理値表で記述することは膨大な規模になるばかりでなく、意味がありません。
No.4
- 回答日時:
論理式を記述するということは、即ち、ある事象(入力)に対して、いかなる選択(出力)をとるべきか
数学的な式としてあらわすことだと言えます。
ところで、このような論理式を設計するのは人間であり、人間が考えることには多かれ少なかれ冗長部分があるものです。そのほうが考えるのが楽だから。たとえば、入力、出力の数が数十、数百なんて場合は、入力を場合わけしていくつかのブロックにまとめ、ブロック毎に中間的な出力を新たに定義して次段を設計して...といった具合です。
一方、出来上がった”回路“の側から見れば、入力と出力の関係が正しければ良いわけで、中間出力だの、場合わけのやり方だの、人が加えた冗長な部分は関係ない。だから簡略化してしまうことができます。
では、入力と出力の関係が正しければ良いのなら、特に簡略化しなくてもよいか、というとそのような回路は、現実的にはまず、満足に動かないでしょう。
それは、実際の論理素子は、入力の変化が出力に反映されるのに時間がかかるので、簡略化していない冗長な回路では、実行時間がかさんで高速で動かせなかったり、内部のブロック毎の実行時間に差ができて、出力に余計な波形や、ノイズが現れる等の悪影響がでてくるためです。
また、回路規模の大きな回路を製造するとなると、当然コスト高になります。極端な話、こんな大きな回路作れない!と言う場合もあります。このような事態を避けるため、知恵を絞って簡略化するのです(ただこの場合、簡略化というより、回路を最適化する、と言い直したほうがよい)
No.1
- 回答日時:
実際に行ってみればすぐ解りますよ。
(3)の段階までで導き出された論理式は、圧縮(簡略化)が可能なのです。
やっていることは(意味的には)、1+1+1+1-1を1×4-1や1+2にするのと同じです。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 工学 自販機の設計 授業で論理回路を用いて自販機を設計するのですが、写真に示すjk-ffの論理式でJ1では 3 2023/01/17 18:49
- 数学 二項定理と乗法定理の問題について 2 2022/04/25 22:05
- 工学 全波整流回路では順方向電圧降下により出力電圧が理論値よりも下がってしまいますが、これを理論値にできる 8 2023/04/21 14:19
- 物理学 測定値と理論値の誤差について 交流回路の実験でRL回路、RC回路、RLC直列回路の周波数を上げた時の 1 2022/05/22 23:37
- 物理学 共振周波数と尖鋭度の測定値と理論値の誤差について RLC直列共振回路の実験で共振周波数fと尖鋭度Qの 2 2022/05/22 23:45
- 糖尿病・高血圧・成人病 血液検査の実測値と理論値との相違 1 2022/10/06 09:31
- 文学 課題レポート 1 2023/07/09 14:55
- その他(形式科学) 【ハードウェア 論理ゲート 論理回路】 6入力のOR回路には複数構成が考えられるそうなのですが、どの 1 2023/06/22 09:25
- 物理学 プログラみングの方面に行きたくない 2 2022/08/06 13:48
- その他(自然科学) 相対性理論と量子力学の統一の正体は、物質M±の変化進行形の性質に有る。とは思いませんか?? 1 2023/03/28 08:56
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~12/2】 国民的アニメ『サザエさん』が打ち切りになった理由を教えてください
- ・ちょっと先の未来クイズ第5問
- ・【お題】ヒーローの謝罪会見
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
近接スイッチの2線式と3線式...
-
オペアンプ/反転増幅器/頭打ち
-
利得と増幅率
-
なぜ、RS-FF回路がチャタリング...
-
電気設備で使われるGCの意味...
-
400V 3相4線式について...
-
EMFとPDについて
-
周波数特性の理論値を求めるには?
-
電気回路のπ型回路の2端子対回...
-
全波整流回路では順方向電圧降...
-
カップリングコンデンサでワン...
-
[LT Spice] オペアンプのシミュ...
-
直流負荷線ってなんですかね、 ...
-
トランジスタの電圧増幅率につ...
-
アンプの出力にあるコンデンサ...
-
波形に遅延が起こる理由ってわ...
-
パルスとレベルについて
-
電流値(AC・DC)
-
電気について ループ回路とはど...
-
検波回路についてです。 電子回...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
近接スイッチの2線式と3線式...
-
パルスとレベルについて
-
オペアンプ/反転増幅器/頭打ち
-
400V 3相4線式について...
-
電気設備で使われるGCの意味...
-
クランプ回路
-
同一電圧値、異なる電源供給源...
-
EVT(GPT)の電圧比について
-
電気回路について
-
ハートレーとコルピッツ発振回...
-
ハイパスフイルタが微分回路に...
-
[LT Spice] オペアンプのシミュ...
-
車の12vから5vの電源を取り出す...
-
4入力XORの論理式
-
利得と増幅率
-
流量計のパルス出力について
-
電流値(AC・DC)
-
3端子レギュレータ、トランジス...
-
オペアンプの故障
-
触れるだけタッチライトのしくみ
おすすめ情報