
No.1ベストアンサー
- 回答日時:
算数オリンピックで出てきそうな問題ですね。
補助線を引くのではなく、辺ADで折り返した図形を考えてみてください。
(2つの四角形が辺ADでつながっている形)
折り返した図形を四角形ADC’B’とし、CC’を結びます。
すると、正〇角形が 2つ現れます。(大きいものと小さいもの)
この図が描ければ、難しい計算にはなりません。
108= 54×2や等しい長さの辺の位置に注意してみてください。
早速のご回答、ありがとうございます!
そうやって計算しますと、x=48°になりますね。
この方法は本当にすごいです。答えがすぐわかりますね。
でも、私にも思いつきそうもありません。(涙)
他には、普通の人でも思いつきそうな方法はありますかな?
No.5
- 回答日時:
正五角形の1つの内角が108°という事実
を知っていれば、ANo.1(ANo.4)さんのやり方
が最も理にかなっている気がしますが、
あえて、別の方法で記しておきます。
ラフに書いたので適当に修正してください。
まず、辺AD、BCをそれぞれ右に伸ばしていき
交わった点をEとします。
次に点Cを中心に半径CB(=CD)の円を描きます。
その上で点Cから線分AEと直角になるように線を引き、
線分AEとの交点をG、円との交点をFとします。
また、円と線分AEとの交点をHとし、
線分CH、FHを引きます。
この時、CD = CHより△CDHは二等辺三角形であり
また△CDG≡△CHG …(1)
さらに、線分ACと線分AFを追加します。
ここで、∠BEA = 180°- (108°+54°) = 18°(=∠CEG)
また、△BACが二等辺三角形であることより
∠BAC = (180°- 108°) / 2 = 36°
∴∠DAC = 54°- 36°= 18°(=∠CAG)
これから、△CAEは二等辺三角形であり
CA = CE で△CAG≡△CEG。
今、∠FCE = 180°- ∠CEG - ∠EGC = 180°- 90°- 18°= 72°
よって、∠BCF = 180°- ∠FCE = 180°- 72°= 108°
なおかつ BA = CF より AF // CE
平行線の錯覚が等しいことより
∠CEG = ∠FAG = 18°△CAFは二等辺三角形で
△CAG≡△FAG(≡△CEG)
よって CG = FG から△CDG≡△FDG(≡CHG)
従って CD = FD = CF(円の半径) となり
△CDFは正三角形であり∠DCF(∠DCG) = 60°
従って、X°= ∠BCD = ∠BCF - ∠DCF = 108°- 60°=48°
また X°= ∠BCH = ∠BCD + ∠DCG + ∠HCG = 48°+ 60°+ 60°= 168°
(∵(1)より)
答え:X = 48°または X = 168°

No.4
- 回答日時:
#1です。
自分の中での整理も含めて。
#2さんの方法はわたしも解けませんでした。
三角関数を使うにしても、数値計算になってしまうかと。
#3さんの2つの答えは、正三角形を折り返すことで説明ができます。
もとの四角形がだいぶ違う印象になります。

No.2
- 回答日時:
「ひらめき」なんか使わずに、普通に計算して解く方法。
1) 三角形BCDは二等辺三角形なので、∠DBC = ∠BDC
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2) ∠ABD = 108°- ∠DBC
3) ∠DAB + ∠BDA + ∠ABD = 180°(三角形の内角の和)
以上から、計算できますよ。
ありがとうございます。
私も同じように計算しようとしましたが、できませんでした。
考えれば辺ABは他のニ辺に等しいという条件を全然使っていなくて
通りでできませんでした。
ORUKA1951さんは∠BDAをどういうふうに表示したのですか。
もう少し具体的に書いていただけませんでしょうか。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
教えてください。
-
ベクトルの問題。解説お願いし...
-
数学A 三角形の内心の問題です
-
問題 y=sinx(0≦x≦π)とy=x y=π-x...
-
三角形の相似
-
高校2年数学 方べきの定理です ...
-
中学校三年生 図形の問題です。
-
数学のベクトルの問題です。 四...
-
おうぎ形の二等分線は垂直二等...
-
組み合わせ
-
ヤングの実験で質問です。この...
-
数学II 直線y=2x+kが放物線y=3x...
-
原論3巻命題35について
-
二次関数のグラフがx軸から切り...
-
3次元空間上の2点を結ぶ線分の...
-
図形
-
公務員試験の判断推理の方位の...
-
△OABに対し、OPベクトル=sOAベクトル+...
-
正五角形の作図の証明!
-
√は生活のどんな場面ででてくる...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
ベクトルの問題。解説お願いし...
-
△OABに対し、OPベクトル=sOAベクトル+...
-
円が直線から切り取る線分の長...
-
ヤングの実験で質問です。この...
-
直角二等辺三角形の書き方教え...
-
ある点からある直線へ降ろした...
-
四面体ABCDにおいて、辺AB,CDの...
-
放物線y^2=4pxの焦点F...
-
数学II 直線y=2x+kが放物線y=3x...
-
数学の問題で 2点A(0, 1), B(1,...
-
数学A 三角形の内心の問題です
-
数学のベクトルの問題です。 四...
-
高校数学です。 △ABCにおいて、...
-
中学生 数学 図形 この問題、解...
-
高校数学 文字の置き方について
-
3次元空間上の2点を結ぶ線分の...
-
AB=2,BC=3,∠ABC=60°の三角形が...
-
折戸の軌跡
-
教えてください。
-
二等辺三角形の作図について
おすすめ情報