1-1+1-1+…は交互級数として有名なものの一つですね。普通は、この級数は、0と1の間を振動する一定の値に収束しない級数となりますが、異なる結果になるように計算する方法もあります。直感的には、0と1の間の平均をとるという感覚で1/2と計算する場合がある。このような計算方法は普通は行わない、行ってはいけないということですが、ある意味、特にそのように計算すると断りを付けた上で、計算することを許可する場とでもいうか、その機会を与えることを許容することもあるという理解でいます。
では、条件をもう少し広げて、1+(-1+-1+1-1+…)=1とか1+1+(-1+1-1+…)=2、或いは-1+(1-1+1-1+…)=-1とか-1-1+(1-1+1-1+…)=-2といった計算を許容するする場を設けるというか、そのように計算する機会を数学の計算方法の分野に追加することは可能なのでしょうか?
ちょうど、普通の再配列定理では、絶対収束する無限級数はその計算順序を入れ替えても収束値は変わらない、となるところを、リーマンの再配列定理では、収束の条件を拡大した条件収束という条件を導入して、そのまま素直に計算すると一定の値に収束する無限級数が絶対値で計算すると∞に発散する場合でも、順序を入れ替えて計算することを許可して、任意の実数値または±∞とすることができると示しているように、条件収束の条件を緩めて、計算することを許可する場合を導入しようというわけです。
今回の交互級数、1-1+1-1…の場合、少なくとも、任意の整数を表すことが可能になるでしょう。そうすると、色々と面白いことが出てくるのではないか、と思われるのです。勿論、普通はこんな計算はしてはいけない、このいわば新再配列規則を適用するこの場限りの計算方法だという断りは入れる必要がありますが。
どうでしょう?それでも、このような計算方法を許容する場合というものを許可してはいけないのでしょうか?
A 回答 (10件)
- 最新から表示
- 回答順に表示
No.10
- 回答日時:
あーわかった。
無限和の入れ替えが不可な代表例として、以下のような条件下での無限級数がよく挙げられます。
**交代級数**:
交代級数の収束とその和の順序の入れ替えに関する例として、特に有名なのはグランディの級数です。
グランディの級数:
\[ 1 - 1 + 1 - 1 + 1 - 1 + \cdots \]
この級数は交代級数であり、部分和を計算すると次のようになります:
\[ S_1 = 1 \]
\[ S_2 = 1 - 1 = 0 \]
\[ S_3 = 1 - 1 + 1 = 1 \]
\[ S_4 = 1 - 1 + 1 - 1 = 0 \]
このように、部分和が1と0の間を交互に行き来するため、この級数の和を決定することはできません。しかし、この級数を別の順序で並べ替えると異なる結果が得られることがあります。
例えば、次のように括弧をつけて並べ替えると:
\[ (1 - 1) + (1 - 1) + (1 - 1) + \cdots = 0 + 0 + 0 + \cdots = 0 \]
一方で、以下のように括弧をつけると:
\[ 1 + (-1 + 1) + (-1 + 1) + \cdots = 1 + 0 + 0 + \cdots = 1 \]
このように、無限級数の項を再配置することで異なる結果が得られるため、無限和の入れ替えが不可であることが示されます。これがグランディの級数の有名な例です。
No.9
- 回答日時:
絶対収束ではないにで、足して終わるか引いて終わるかどっちかわからない
ある種確率が1/2になってるとしても不都合がない
(そう計算できる場合もあるとか)
ただそれだけ
1+1+(-1+1-1+…)=1、5
2になるのは足して終わるとき
部分を区切ってる
1+Σ(-1)^n
これが入れ替えの可否になるのか…
No.8
- 回答日時:
1-1+1-1… の項の並び順を入れ換えたものの部分和を考えると、
任意の整数へ収束するものが作れます。
それを面白いと考える人もいるでしょうが、
無際限に自由なので意味がないと考える人もいるでしょう。
「意味がない」派の人は、項の並び順を入れ換えてもいい無限和と
入れ換えてはいけない無限和を区別するほうほうを見つけ、
入れ換えていいほうの無限和の収束に「絶対収束」という名をつけています。
絶対収束とは、級数の項のうち正数であるものだけを集めた和と
負数であるものだけを集めた和がどちらも収束するという意味です。
No.6
- 回答日時:
どっちで終わるかわかんない無限級数という定義を解いて、必ず引いて終わるなどの定義にするなら
いいとして、頭に1を足すかどうかは関係なくなるはず。
1+1-1+…1-1=0
1+(1+1-1+…1-1)=1
1+1-1+…=1/2
1+(1+1-1+…)=3/2
必ずどっちかで終わるとした場合は級数かどうかも
怪しいというか物理的意味等が、どういう時なのか
どういう場合か、何を意味しているのか
答えに対する問題を設定し直しのようになってしまいます
それを使って何かを解くのかが、そもそも何でその設定にするかがないと、繋げるにも、ただその設定だからその式になることなだけで、具体的に示せないのなら、1+1=2と同じと言うか
その意味を聞いてるんだとすると、難しすぎる。
禁止するなら禁止の意味も明確にすること
元の1/2にする計算の意味を踏まえて。
ということのように思います
No.3
- 回答日時:
No.2
- 回答日時:
今までの数学に矛盾を生む事になるなら禁止。
矛盾を生まず、新しい論理体系が出来ていままでの論理を内包出来、解決できなかった問題が解けるなら広がります。
そうで無ければ何の意味もないので無駄です。
No.1
- 回答日時:
規則の名称とかにこだわらず、物理的にでも何か意味のある説明、現象を示すていることが仮定のいみを裏付けるか
設定自体が何の意味を持つかの説明が妥当であることを裏付ける物理現象等があるか
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 『数は実在するのか』 6 2023/06/04 15:15
- 物理学 余剰次元を減らすことは可能か? 2 2024/06/09 12:47
- 数学 『無限回の計算』 4 2023/06/07 17:49
- 数学 ∫1/lnxdx について 8 2024/05/19 12:42
- 統計学 確率変数の収束について 1 2024/03/09 22:12
- 統計学 t値の計算方法 1 2022/11/29 18:37
- Visual Basic(VBA) Excel のユーザー定義関数でソルバーが動作しない 1 2022/09/05 19:51
- その他(お金・保険・資産運用) 至急!【Wolt】各メニューの価格設定の簡単な計算方法 3 2023/03/05 11:58
- Excel(エクセル) エクセル 関数について質問です。 2 2022/10/03 11:14
- 統計学 t検定について教えてください 2 2023/02/23 16:35
このQ&Aを見た人はこんなQ&Aも見ています
-
これまでで一番「情けなかったとき」はいつですか?
これまでの人生で一番「情けない」と感じていたときはいつですか? そこからどう変化していきましたか?
-
これ何て呼びますか
あなたのお住いの地域で、これ、何て呼びますか?
-
土曜の昼、学校帰りの昼メシの思い出
週休2日が当たり前の今では懐かしい思い出ですが、昔は土曜日も午前中まで学校や会社がある「半ドン」で、いつもよりちょっと早く家に帰って食べる昼ご飯が、なんだかちょっと特別に感じたものです。
-
おすすめのモーニング・朝食メニューを教えて!
コメダ珈琲店のモーニング ロイヤルホストのモーニング 牛丼チェーン店の朝食などなど、おいしいモーニング・朝食メニューがたくさんありますよね。
-
好きな和訳タイトルを教えてください
洋書・洋画の素敵な和訳タイトルをたくさん知りたいです!【例】 『Wuthering Heights』→『嵐が丘』
-
1+2+3+…=?
数学
-
下の画像の中の三角形は正方形だ、と友達が言っていたのですが、その根拠のようなものはありますか? 二等
数学
-
√-1 は、何になるのでしょうか
数学
-
-
4
簡単な算数の問題です
数学
-
5
むじゅん 委細な矛盾が生じるなら分数みたいな表記やめれば?って思いませんか?
数学
-
6
以前にも質問させていただいたのですが、理解することができなかったので再度質問させていただきます。 写
数学
-
7
小学生の時(40年前)に、18÷0は解無し、0÷18は0と教わりました。 しかし今は、どちちらの答え
数学
-
8
数学 算数の通分について 分数を約分するときって 例えば分母が 8と6だったら8×6をして48 だか
数学
-
9
中二数学について質問です。 整数の性質のところで、nを整数とすると2の倍数は2n、3の倍数は3nなど
数学
-
10
数学での背理法について
数学
-
11
BINGが間違えた、とっても簡単な算数の問題です、これを見て、どう思われますか。
数学
-
12
√2が無理数であることの証明で、 素因数分解の一意性に矛盾する事を導き出す方法がありますが、コレって
数学
-
13
数学の約束記号の問題について教えてください。
数学
-
14
a+b=1のとき a²+b² > ab 解説お願いします
数学
-
15
iに絶対値がつくとどうなるのかを教えてください
数学
-
16
√0.25=±0.5である。 これはなぜ正しく無いのですか?
数学
-
17
仕事をクビになり会社の門で憔悴していたらババアがいきなり話しかけてきました。 「この大きい袋に7で割
数学
-
18
1/z^2 を z=i の周りで展開しなさい。 この問題が分からないです。また複素関数論のいい教科書
数学
-
19
下記の問題について、「5は素数なので、2個以上の整数の積ではないので、整数aは一種類の因数nだけ」の
数学
-
20
エックスの値は5cmですか?
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
15%増しの計算方法
-
3分2の計算教えて下さい
-
指数計算 2^n-1
-
パーセントの計算
-
日にちの計算が解からないらし...
-
1÷無限=0ということは数(大き...
-
計算の質問なんですが、 10000×...
-
一日ずつ2倍の金額をもらい続...
-
標準正規分布のモーメント母関数
-
何通りかの計算で 7C4 の答えが...
-
例えば16の4分の3乗は?
-
1人の人間の祖先をさかのぼっ...
-
組み合わせ
-
割引の計算を教えてください。
-
Excel 計算式へ置換時にでてく...
-
(かっこ)^2のかっこ内の符号を...
-
分数の問題がわかりません。
-
初歩的な計算式の問題です。
-
4C2はなぜ6になるのですか? 私...
-
パーセンテージの出し方
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
15%増しの計算方法
-
パーセントの計算
-
3分2の計算教えて下さい
-
前年比の%の計算式を教えてく...
-
ラジアン値を°′″(度・分・秒)...
-
指数計算 2^n-1
-
一定倍したある数を元に戻すには?
-
一日ずつ2倍の金額をもらい続...
-
エクセルで関数計算後の値を数...
-
250gを8割と2割に分けると
-
何通りかの計算で 7C4 の答えが...
-
6畳間は何立方メートル?
-
Excelの反復計算がわかりません。
-
「出来型」と「出来形」の使い...
-
3割アップとは、どうのように...
-
計算の質問なんですが、 10000×...
-
2の365乗
-
算数の比 0:1
-
教えて下さい
-
日にちの計算が解からないらし...
おすすめ情報
より正確に(?)、例えば1-1+1-1+…=1と計算するためには、1+(-1+1)+(-1+1)+…=1+0+0+…=1
という風に計算することになります。