提出期限が迫っていて困っています。
いろいろと問題を解いてきたのですが、
残る微分積分が理解できずかなり苦戦中です。
わかる方教えてください。
宜しくお願いします。

I 次の関数を微分せよ(f')。
1) 3x**2 + 5x + 2 2) 1 / (3x) 3) (2x + 1) / (x**2 + 5x + 3) 4) (2x + 1)**(1/2)
5) 1 / (x**2 - 2x + 3)**(1/2) 6) 3 log x 7) x log (2x + 1) 8) e**(2x) 9) x**(1/3)
10) sin x + cos 2x 11) e**x cos x 12) log x / sin x 13) x log x - tan x
14) (x**3 + 3x**2 - 6x + 2)**3 15) (x**3 + 2x - 1)**(1/2)
II 上問 1-2, 6-11の第2階導関数をもとめよ(f'')。
III 次の関数の不定積分(原始関数)を求めよ。
1) x**2 - 4x + 1 2) 1 / (x + 3)**2 3) x**(2/3) 4) (3x + 2)**(1/2)
5) 1 / (2x) (x > 0) 6) 1 / (x**2 - 1) (x > 1) 7) e**(2x) 8) x log x
9) sin x + cos 2x 10) x cos x 11) x**2 e**x
IV 上問 1-5, 7-8, 11の区間 [ 1, 2 ] 上の定積分を求めよ。

(x**2はxの2乗を、x**(1/3)はxの1/3乗(3乗根)を表わす。)

このQ&Aに関連する最新のQ&A

A 回答 (3件)

mininakaさん、これぐらい出来ないと大学行けないよ。

計算法は教科書に載っているので、それを見ながら解くべし。私が見た感じ、(1) Y= 3x^2+5x+2が出来ないというのは、勉強不足です。あと、当然ながら合成関数の微分も知らないみたいだし、第二次導関数の問題をやっている進度なのに、なんで高2の問題である、(1)が出来ないのか?かなり謎です。まず高2の問題から順序よくやるのをおすすめ。微積の基本が出来ていないのに、数3やるのはいかがかと…。
    • good
    • 0

I 次の関数を微分せよ。


(1) Y= 3x^2+5x+2 (2) Y= 1/(3x) (3) Y= (2x+1)/(x^2+5x+3)
(4) Y= √(2x+1) (5) Y= 1/√(x^2-2x+3) (6) Y= 3log x
(7) Y= x log (2x + 1) (8) Y= e^(2x) (9) Y= x^(1/3)
(10) Y= sin x + cos 2x (11) Y= e^(x cos x) (12) Y= log x / sin x
(13) Y= x log x - tan x (14) Y= (x^3 +3x^2 -6x +2)^3
(15) Y= √( x^3 + 2x - 1)
(2) 上問 1-2, 6-11の第2階導関数をもとめよ
(3) 次の関数の不定積分(原始関数)を求めよ。
(1) Y= x^2-4x+1 (2) Y= 1/(x+3)^2 (3) Y= x^(2/3)
(4) Y= √(3x+2) (5) Y= 1/(2x) (x>0) (6) Y=1/(x^2-1) (x>1)
(7) Y= e^(2x) (8) Y= x log x (9) Y= sin x + cos 2x
(10) Y= x cos x (11) Y=(x^2)(e^x)
IV 上問 1-5, 7-8, 11の区間 [ 1, 2 ] 上の定積分を求めよ。

という問題ですね。
読んでもらうには、わかりやすく書かなきゃね。
回答はどなたかが付けてくださるでしょう。
    • good
    • 0

括弧がぐちゃぐちゃでわかりませぬ・・・

    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qcos^2(x+(π/3))+cos^2(x+(2π/3))+cos^2(x+π) 。簡単な方法で。

質問文が分かりづらいので書き直しました。

cos^2(x+(π/3))+cos^2(x+(2π/3))+cos^2(x+π)
を出来るだけ簡単な方法で解いてください。
答えは3/2です。

前回読みにくい質問文でしたのにお答えいただきましたspring135さまありがとうございました。前回も大変助かりました。

Aベストアンサー

(cos(a))^2=(1/2)+(1/2)cos(2a)
Σ[k=1~n]cos(x+2πk/n) は単位円の円周を等分割する
点のx座標の和なので 0

(cos(x+π/3)^2+(cos(x+2π/3))^2+(cos(x+π))^2
=(3/2)+(1/2){cos(2x+2π/3)+cos(2x+4π/3)+cos(2x+2π)}=3/2

Qlim[n→∞]∫[0,π/2]{sin^2(nx)}/(1+x)=(1/2)log(π/2 + 1)

lim[n→∞]∫[0,π/2]{sin^2(nx)}/(1+x)=(1/2)log(π/2 + 1)

ということなのですが、区分求積法を使おうとしたのですが、よくわかりません。
複雑ですが、解けた方は教えていただけないでしょうか。

Aベストアンサー

ANo.1様が既に回答を出されているようなので、無意味かも知れませんが・・・、
lim(n→∞)∫[0,π/2]{sin^2(nx)}/(1+x)・・・(1)
(1)においてsin^2(nx)=1/2・(1-cos(2nx))と変形出来る。(・はかけ算の意味)
よって
与式=lim(n→∞)∫[0,π/2](1-cos(2nx))/2(1+x)dx
=lim[n→∞]∫[0,π/2]1/2(1+x)dx - lim[n→∞]∫[0,π/2]cos(2nx))/2(1+x)dx
={1/2・log(1+x)}[0,π/2]-lim(n→∞)∫[0,π/2]cos(2nx))/2(1+x)dx

第一項目の積分は=1/2・log(1+π/2)
第二項目の積分において、f(x)=1/(1+x)は(0~π/2)で積分可能である。従って、そのフーリエ係数はn→∞のとき0に収束する。
(リーマン-ルベグの定理を用いた。)よって第二項目の積分は0となる。

よって、lim(n→∞)∫[0,π/2]{sin^2(nx)}/(1+x)=1/2・log(1+π/2)
となる。

ANo.1様が既に回答を出されているようなので、無意味かも知れませんが・・・、
lim(n→∞)∫[0,π/2]{sin^2(nx)}/(1+x)・・・(1)
(1)においてsin^2(nx)=1/2・(1-cos(2nx))と変形出来る。(・はかけ算の意味)
よって
与式=lim(n→∞)∫[0,π/2](1-cos(2nx))/2(1+x)dx
=lim[n→∞]∫[0,π/2]1/2(1+x)dx - lim[n→∞]∫[0,π/2]cos(2nx))/2(1+x)dx
={1/2・log(1+x)}[0,π/2]-lim(n→∞)∫[0,π/2]cos(2nx))/2(1+x)dx

第一項目の積分は=1/2・log(1+π/2)
第二項目の積分において、f(x)=1/(1+x)は(0~π/2)で積分可能である。従っ...続きを読む

Qf(x)=x/2+(1/3)Σn=1から3まで(cos^2(x+(nπ/3))

f(x)=x/2+(1/3)Σn=1から3まで(cos^2(x+(nπ/3))
(-1≦x≦1)
のグラフの概形を描け
x/2+1/2の右上がりの直線になりますが半角の公式を使って計算していく以外に解法思いつきますか。

出典:東京女子医大2013.大問4教学社赤本より引用

Aベストアンサー

S=(cos^2(x+(π/3))+(cos^2(x+(2π/3))+(cos^2(x+(3π/3))
cos(x+π)=-cosx
cos(x+(2π/3))=cos((x-π/3)+π)=-cos((x-π/3)

S=cos^2x+cos^2(x+π/3)+cos^2(x-π/3)
=cos^2x+[cosxcos(π/3)+sinxsin(π/3)]^2+[cosxcos(π/3)-sinxsin(π/3)]^2
=cos^2x+2cos^2xcos^2(π/3)+2sin^2xsin^2(π/3)
=cos^2x+2cos^2x(1/4)+2sin^2x(3/4)
=cos^2x+cos^2x(1/2)+sin^2x(3/2)
=(3/2)[cos^2x+sin^2x]
=3/2

Qexp{L[1]x+L[2]x^2/2+L[3]x^3/3+…}=F[1]+F[2]x+F[3]x^2+…

フィボナッチ数列F[n]は、
F[1]=1,F[2]=1,F[n+2]=F[n+1]+F[n]
で定義され、リュカ数列L[n]は、
L[1]=1,L[2]=3,L[n+2]=L[n+1]+L[n]
で定義されます。このとき、

exp{L[1]x+L[2]x^2/2+L[3]x^3/3+…}=F[1]+F[2]x+F[3]x^2+…

が成り立つそうなのですが、どうしてなのですか?

右辺は、フィボナッチ数列の母関数と似ていてなんとか求められるのですが、左辺をどうして求めていいかわかりません。

なお、式は
http://mathworld.wolfram.com/FibonacciNumber.html
の(68)を参照しました。

Aベストアンサー

↓ここに証明がありますね。
http://maths.dur.ac.uk/~dma0rcj/PED/fib.pdf
(2.7 A surprising sum を見てください。)

参考URL:http://maths.dur.ac.uk/~dma0rcj/PED/fib.pdf

Qcos(x/2)*cos(x/2^2)*・・・・・cos(x/2^n)

実数x及び自然数nに対して
a_n=cos(x/2)*cos(x/2^2)*・・・・・cos(x/2^n)
とする。
(1)2^n*a_n*sin(x/2^n)の値はnと無関係に一定であることを証明せよ。
(2)log|a_n|をxで微分することにより、
Σ(n=2~∞)1/2^n *tan(π/2^n)=1/π
であることを証明せよ

この問題に取り組んでいます。
(1)で2^n*a_n*sin(x/2^n)の計算を行っていて、いろいろな三角関数の公式を利用してみたのですが全然うまくいきません。「nと無関係」ということはnが消えればいいということだと思うのですが・・・。
(2)はloga_nを微分したところ
-1/2 tan(x/2) - 1/2^2 tan(x/2^2) -・・・となったのですがここから証明すべき式に変形するにはどうしたらいいのでしょうか?
回答いただければありがたいです。よろしくお願いします

Aベストアンサー

はじめまして。

(1)は倍角の公式(sin(2x) = 2*sin(x)*cos(x))を使うとおもしろいようにcos(x/2^n)が消えていきますよ。


人気Q&Aランキング

おすすめ情報