はじめての親子ハイキングに挑戦!! >>

有効数字2桁の場合の「0」の表現は、「0」ですか?
それとも「0.0」ですか?

A 回答 (4件)

0が理論上の値ではなく、計測値を表すのであれば、有効数字が2桁だと「0.0」と書きます、何故なら、


X≒0と書くと、 |X|<0.5   下1桁目は定まらず
X≒0.0と書くと、 |X|<0.05  下1桁目は必ず0 
X≒0.00と書くと、 |X|<0.005  下2桁目も0
小数点以下の0の数によって、Xの真値の範囲が違います。
    • good
    • 1
この回答へのお礼

回答ありがとうございます。
納得して、すっきりしました。

お礼日時:2008/02/08 21:54

0.0 です。


小数第2位を四捨五入する前が
-0.05超(あるいは-0.05以上) ~ 0.05未満
です。
    • good
    • 0
この回答へのお礼

回答ありがとうございます。
納得しました。

お礼日時:2008/02/08 21:55

0.0です。

0は違います。
有効数字は実験などで身近になるのですが、「ここまで自分は正確に測定しました!」っていう証拠になるものです。
気になるようでしたら、問題文とか表とかに載ってる数値に倣うのがいいでしょう。
もし3.98とかいうのがあれば、0.00です。
    • good
    • 1
この回答へのお礼

回答ありがとうございます。
測定した結果に対して、持っている意味が違うと言われると、
なるほど、確かにその通りですね。納得しました。

お礼日時:2008/02/08 21:53

http://www.google.co.jp/search?q=%E6%9C%89%E5%8A …
うーん 0だった場合かぁ・・・出てきた頭の方のは0じゃない数字の事で書いてあるね。
0の場合はどうなのかは少し後ろの記事かも・・・

この回答への補足

さっそくの回答、ありがとうございます。

0は確実に0に過ぎないので、0でいい気がしてるんですが、全然確証がなくて困ってます。
実は、加えて、測定値の場合は、定量限界、検出限界の問題もあるので、
その場合は、0.0と記載することもあるのかどうかも気になっています。

補足日時:2008/02/08 15:26
    • good
    • 0
この回答へのお礼

無事、解決して、すっきりしました。

お礼日時:2008/02/08 21:56

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q有効数字とはなんですか?

中学生にもわかるように説明してくだされば幸いです。
色々調べたのですが、よくわからなくて、、
以下の認識で合ってますか?

認識:近似値や測定値を表す数字のうち,実用上有意義な桁数だけとった数字。
また、「有効桁数」とは、有効数字の桁数のこと。

例えば、1.2345という数字があったとしたら、実用上有意義な桁数が3なら、有効数字は1.23で、有効桁数は3桁。

また、0の処理については以下の通り。

0ではない数字に挟まれた0は有効である。例えば、

60.8 は有効数字3桁である。
39008 は有効数字5桁である。
0ではない数字より前に0がある場合、その0は有効ではない。例えば、

0.093827 は有効数字5桁である。
0.0008 は有効数字1桁である。
0.012 は有効数字2桁である。
小数点より右にある0は有効である。例えば、

35.00 は有効数字4桁である。
8 000.000000 は有効数字10桁である。

Aベストアンサー

こんばんは、はじめまして。

有効数字、確かによくわからない考え方ですよね。
(私も習った当初はちんぷんかんぷんでした)

そもそも、
「有効数字とはどんな時に使う物なのか?」とか、
「有効数字は何のために考えるのか?」がわからないと、
ただ、「考えるのがとても厄介なよくわからない数字」になってしまうと思います。

という事で、有効数字の利用例を1つだけ。
分かりやすい所で、両端に丸い棒が立った、H型の鉄棒の幅を計る事にしてみましょう。

両端の丸い棒は、30cmものさし(mmの目盛りあり)で太さを調べてみると4.8cm
間の鉄棒の部分は、1cm単位の巻尺(mmの目盛りなし)で長さを調べて85cm
さて、鉄棒の端から端までの幅はいくつなのかを考えます。

両端の丸い棒は左右で2本あるので、計算式は
(4.8cm)×2 + 85cm = 9.6cm + 85cm = 94.6cm
になりますが、この"94.6cm"って、どこまで信用できる良い数字ですか?

両端の丸い棒は、mmの目盛りがある30cmものさしで調べたので、0.1cm単位で正しいです。
でも、間の鉄棒の部分は、1cm単位の巻尺(mmの目盛りなし)で調べているので、1cm単位までしか分かっていませんよね?
おそらく、84.5cm~85.4cmの間なら、"だいたい85cm"になってしまう。
この場合、鉄棒の幅は"94.6cm"と言い切ってしまって良い物でしょうか?

1cm単位で調べた物がある以上は、その合計の幅の94.6cmも1cm単位までしか正確ではない。
と言う事は、この94.6cmの有効数字は2桁。6を四捨五入して約95cmとすれば確実です。

確か、中学校(?)で出てきた有効数字とはイメージがだいぶ異なると思いますが、実用例が頭に入っていると理解の度合いも変わってくるのではないでしょうか?

こんばんは、はじめまして。

有効数字、確かによくわからない考え方ですよね。
(私も習った当初はちんぷんかんぷんでした)

そもそも、
「有効数字とはどんな時に使う物なのか?」とか、
「有効数字は何のために考えるのか?」がわからないと、
ただ、「考えるのがとても厄介なよくわからない数字」になってしまうと思います。

という事で、有効数字の利用例を1つだけ。
分かりやすい所で、両端に丸い棒が立った、H型の鉄棒の幅を計る事にしてみましょう。

両端の丸い棒は、30cmものさし(mmの目盛りあり)...続きを読む

Q小数点以下が0になるときの考え方について教え得て頂けると幸いです。小学

小数点以下が0になるときの考え方について教え得て頂けると幸いです。小学算数の指導方法は理解できました(下のサイト)。たとえば12.0という数字では、実測に関する場合には小数点以下の0が有意味で、それ以外は無意味ということになり、無意味な数字は表記しないことが原則となるようですが、このことは、数学ではどのように説明されるのでしょう。整数の範囲であれば、整数論に関する文献を当たることも可能なのですが、こういう問題は何の分野になるのでしょうか。
http://oshiete.goo.ne.jp/qa/5884510.html

Aベストアンサー

物理や化学の分野でよく使われています。
広く言えば測定が関係する、または測定が前提となった数字を扱う分野ではすべて扱います。
「有効数字」という言葉であらわされている数字の扱い方です。
数学的には「誤差論」が背景にあります。(ガウスの「誤差論」というのがよく知られているようです。)
加減・乗除について材料となった数字の誤差が演算の結果の数字の誤差にどのように反映するか、したがって信用できる部分はどれだけであるかを議論しているものです。

普通の数学では測定を前提にしてはいませんのでほとんどの数学的な記述には有効数字は考慮されてはいません。πの値を~万桁出したというようなことが書かれている場合があります。こういうことは自然を記述する数字としてはあり得ないことです。10桁の数字が書かれている文章があれば執筆者の能力を疑ってかかってまず大丈夫でしょう。普通、信用できるのはせいぜい5桁以下の数字です。特別な定数で10桁近い値が得られているものもあります。でもその値は現在得られている最高の精度のものであるということであって、普通の測定で得られる値であるということではありません。
有効数字の桁数を上げることに意味のない数字もかなりあります。
(「桁」という言葉にも注意が必要です。「有効数字」の桁数という時と位どりの意味での桁数とは意味が異なります。位どりの意味での桁数は有効数字の桁数ではありません。測定の精度に関係なく、単位の取り換えでいくらでも変わります。1mは1000mmですから3桁変化します。)

「有効数字」という言葉が異なった意味で使われている場合がありますので注意が必要です。
数値計算の分野(コンピュータの内部処理)の分野で使われている「有効数字」の意味は物理や化学で使われているものとは異なります。コンピュータの中ではほとんどの数字が無限小数として出てきます。どこかで打ち切って次の処理に回さなければいけないのですが打ち切り方が問題になります。最後の数字の扱いも問題になります。これはJISで決めています。(JISにのっているということで工業系の人は「有効数字」というとこの意味だと思っている人が多いです。)
有効数字に慣れてない人が有効数字について知りたいと思ってJISの規格を読むということをやるとおかしなことになります。JISで扱っている数字は測定を前提にしてはいません。有限の桁数の数字(コンピュータの内部処理の有効桁数以下の数字)が出てくればこういう扱いの対象にならないのです。整数が出てくればいつも誤差なしの扱いです。
測定を前提としていて23と23.0は意味が異なるという意味での「有効数字」とは全く別物であることが分かります。
大学の入試問題などではこの食い違いが原因ではないかと思われるおかしな数値がよく目につきます。
自然科学的な立場で言うと欠陥問題である、答えの出ない不十分な数値しか与えられていないおかしな問題であるとしか言えない問題が目につきます。

物理や化学の分野でよく使われています。
広く言えば測定が関係する、または測定が前提となった数字を扱う分野ではすべて扱います。
「有効数字」という言葉であらわされている数字の扱い方です。
数学的には「誤差論」が背景にあります。(ガウスの「誤差論」というのがよく知られているようです。)
加減・乗除について材料となった数字の誤差が演算の結果の数字の誤差にどのように反映するか、したがって信用できる部分はどれだけであるかを議論しているものです。

普通の数学では測定を前提にしてはいません...続きを読む

Qエクセル(Excel)で、数値を一定の有効数字で表示したいのですが…

エクセル(Excel)の書式設定の表示形式では数値を選択すると、小数点以下の桁数を揃えることができますが、同じ感覚で有効数字を一定にして表示させるにはどんな方法があるでしょうか?
例えば、0.01234、0.1234、1.1234、11.1234、111.1234という五つの値を、有効数字3桁を指定して表示して、順に0.0123、0.123、1.12、11.1、111という風に自動的に表示してくれる表示形式、あるいは関数を探しています。
事務計算で小数点以下何桁というのが重要であるように、技術計算ではこのように有効数字を揃えたい場合が多いと思いますので、どなたかご存じの方、お教えください。
なお、指数形式では似たような結果になりますが、わかりにくい表示なので使いたくありません。
よろしくお願いいたします。

Aベストアンサー

◆こんな方法もありますよ
=ROUND(A1,2-INT(LOG(ABS(A1))))

★「0」を考慮すると
=ROUND(A1,2-INT(LOG(ABS(A1)+(A1=0))))

Q計算値と理論値の誤差について

交流回路の実験をする前に、ある回路のインピーダンスZ(理論値)を計算で求めたあと、実験をしたあとの測定値を利用して、同じ所のインピーダンスZ(計算値)を求めると理論値と計算値の間で誤差が生じました。
そこでふと思ったのですが、なぜ理論値と計算値の間で誤差が生じるのでしょうか?また、その誤差を無くすことはできるのでしょうか? できるのなら、その方法を教えてください。
あと、その誤差が原因で何か困る事はあるのでしょうか?
教えてください。

Aベストアンサー

LCRのカタログ値に内部損失や許容誤差がありますが、この誤差は
1.Rの抵抗値は±5%、±10%、±20% があり、高精度は±1%、±2%もあります。
2.Cの容量誤差は±20% 、+50%・ー20% などがあり
3.Lもインダクタンス誤差は±20%で、
3.C・Rは理想的なC・Rでは無く、CにL分、Lに抵抗分の損失に繋がる成分があります。
これらの損失に繋がる成分は、試験周波数が高くなると、周波数依存で増大します。
また、周囲温度やLCRの素子自身で発生する自己発熱で特性が変化します。
測定器や測定系にも誤差が発生する要因もあります。
理論値に対する測定値が±5%程度発生するのは常で、実際に問題にならないように、
LCRの配分を工夫すると誤差やバラツキを少なく出来ます。
 

Q「0.1」を「0.10」と表記する。

「0.1」を「0.10」と表記する。これはなんという名前?でしょう。

Aベストアンサー

皆様がおっしゃるとおり、「有効数字」だと思います。
ちなみに0.1は有効数字1ケタ、0.10は有効数字2ケタです。
別の表現をすれば、0.1は小数点以下1ケタ、
0.10は小数点以下2ケタとなります。

余談ですが...
有効数字って物質の精度等を表す際、
とても重要なものだったりします。
専攻が化学なので、特に有効数字に気を使っています。
普段は気にしませんよね。

Q物理の有効数字2桁

今日、物理のテストがあり、答えを「有効数字2桁で答えよ。」と書いてありました。
答えが「62」の場合は「62」のままでいいのでしょうか?
また、答えが「2300」の場合は「2.3✖10^3」でいいのでしょうか?
答える方法が分からなくて、困ったので質問をしました。
よろしくお願いします。

Aベストアンサー

62は、有効数字が2桁です。明確にしたいときは62.と書く場合もあります。
2300は、有効数字が4桁であることを示していますから、誤りです。
  厳密には判断できない。
  この場合のように「結果を有効数字二桁で示しなさい」では誤りです。
  ポンと数字が示されたときは、判断が出来ません。もちろん2300.と書けば4桁

 23×10²、あるいは、2.3×10³と書きます。

 なお科学的記数法で記述すると、
6.2×10
2.3×10³
 先生によると、有効数字=科学的記数法(指数表記)と思われている方も多々見かけますので、
6.2×10
2.3×10³
が無難でしょうね。(^^)
 もし、62でダメといわれたら、
・0ではない数字より左に0がある場合、その0は有効桁数に含まれない。
  0.000062 は有効数字2桁
・小数点より右の0は有効数字の桁数に含まれる
  62.0 の0は含まれて、3桁
というルールを示す。
 ⇒有効数字 - Wikipedia( http://ja.wikipedia.org/wiki/%E6%9C%89%E5%8A%B9%E6%95%B0%E5%AD%97 )

62は、有効数字が2桁です。明確にしたいときは62.と書く場合もあります。
2300は、有効数字が4桁であることを示していますから、誤りです。
  厳密には判断できない。
  この場合のように「結果を有効数字二桁で示しなさい」では誤りです。
  ポンと数字が示されたときは、判断が出来ません。もちろん2300.と書けば4桁

 23×10²、あるいは、2.3×10³と書きます。

 なお科学的記数法で記述すると、
6.2×10
2.3×10³
 先生によると、有効数字=科学的記数法(指数表記)と思われている方も多々見かけますの...続きを読む

Qエクセルで片対数グラフを作る

エクセルで片対数グラフを作る方法を詳しく教えてください。お願いします。

Aベストアンサー

グラフの数値軸のところで右クリックして
軸の書式設定(O)→目盛(タブ名)

対数目盛を表示する(L)
にチェックを入れてください。

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Qエクセルでセル内に斜線を引くには

Excel97です。表を作成し、いくつかのセル内で斜線を引きたいのですが、どういう操作をしたらいいですか、ご教示ください。

Aベストアンサー

下記のURLを参照してください。
写真いりでわかりやすくなっています。

参考URL:http://www.excel-jiten.net/cell_format/ruled_line_change_slash.html

Q「以降」ってその日も含めますか

10以上だったら10も含める。10未満だったら10は含めない。では10以降は10を含めるのでしょうか?含めないのでしょうか?例えば10日以降にお越しくださいという文があるとします。これは10日も含めるのか、もしくは11日目からのどちらをさしているんでしょうか?自分は10日も含めると思い、今までずっとそのような意味で使ってきましたが実際はどうなんでしょうか?辞書を引いてものってないので疑問に思ってしまいました。

Aベストアンサー

「以」がつけば、以上でも以降でもその時も含みます。

しかし!間違えている人もいるので、きちんと確認したほうがいいです。これって小学校の時に習い以後の教育で多々使われているんすが、小学校以後の勉強をちゃんとしていない人がそのまま勘違いしている場合があります。あ、今の「以後」も当然小学校の時のことも含まれています。

私もにた様な経験があります。美容師さんに「木曜以降でしたらいつでも」といわれたので、じゃあ木曜に。といったら「だから、木曜以降って!聞いてました?木曜は駄目なんですよぉ(怒)。と言われたことがあります。しつこく言いますが、念のため、確認したほうがいいですよ。

「以上以下」と「以外」の説明について他の方が質問していたので、ご覧ください。
http://oshiete1.goo.ne.jp/kotaeru.php3?qid=643134


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング