1 発電機の回転数と電力の関係を知りたいと思います。
 調べて考えたところ、回転数に比例して電圧が上がり、結果電流も上がって、一回転の電力は回転速度の二乗に比例する、、ようですが、だとしたら時間当たり出力は3乗に比例する、ということでいいのでしょうか。

2 じつは、今だに起電力と電力と電圧と電流の統合的関係がわかっていません。
 (d磁束/時間)×巻き線=(比例)=電圧と思いますが、(d磁束/時間)が本来の概念として相当するのは電流なのか電圧なのか。
 起電力とは電圧だとしたら、負荷を並列に数を増やすと抵抗が減って、それに応じていくらでも電流を流せるはずという原理になってしまいそうです。
 発電機は他の仕事を電力に変換するはずなのに、電圧か電流の一方の式しか見付けられませんでした。
 仕事=抵抗×ストローク、に相当するものはどうなっているのでしょう。実際の事情でなく原理として知りたいです。

2 の方は暇なときでいいです。1の方は困るというより、わからないと危ういというか。

このQ&Aに関連する最新のQ&A

A 回答 (5件)

1.


電力とは単位時間当たりに生み出すエネルギーのことを意味します。
(仕事率と同じ次元になります。単位も仕事率の単位W(ワット)を使用します)
時間当たりの量ですので、1回転当たりのエネルギー量と同じではありません。
回転数を上げると、1回転に要する時間は反比例して小さくなります。
つまり回転数を2倍にすると電力は4倍になりますが、1回転当たりに生み出すエネルギーはその半分、つまり2倍になります。

2.
起電力とは誘導される電圧をさします。
では負荷のインピーダンスを小さくすることでより大きな仕事を取り出せるかというとそれは違います。
負荷のインピーダンスを小さくし電流量を大きくすると、発電機内の磁界が大きくなり発電機をまわすのに必要なトルクが増大します。
同じ仕事率で発電機を回すと、(仕事率)=(トルク)×(回転数)ですので回転数が落ちてしまいます。その結果、起電力が落ちてしまいます。
出力電圧を一定にするためには与える仕事率をより大きくする必要があります。

この回答への補足

1. ありがとうございます。

2. 高校の物理を忘れていたのが原因かも知れません。
 つまり、発電機の回転子に磁石を附け、周囲にコイルを配して、コイルの中の磁束を変化させるように磁石を動かすと、磁束密度を安定させるように電流を流そうとするのが起電力であり、いわば電流=ブレーキ力である、ということですね。
 すると、コイルの両端をつなぐと、回転の始めにものすごい抵抗力がかかり、コイルが熱を持って抵抗値を上げるまでの間、小さな発電機でも極めて強力なブレーキとして作用する、ということになりそうですが、そうなるのでしょうか? 実物では壊したくないのでなるべく実験したくありませんが。

補足日時:2009/05/29 21:29
    • good
    • 1
この回答へのお礼

 ありがとうございました。
 質問は完了しました。

お礼日時:2009/06/02 17:57

ご想像通り回ってる発電機を短絡させると、急ブレーキがかかります。



発電機とモーターはまったく同じものですが、モーターを急停止させるのに、短絡という手段は実際に良く使われています。
その名も「ショートブレーキ」とか「ダイナミックブレーキ」とか言っています。
http://www.google.com/search?hl=ja&lr=lang_ja&ie …
http://www.google.com/search?hl=ja&safe=off&num= …
    • good
    • 0
この回答へのお礼

 ありがとうございます。
 これでこの疑問は完了したと思います。
 かつてわかっていた気もしたりしますが、人と話し合ったことがないと忘れてしまう気がします。

お礼日時:2009/06/02 17:55

2. に関して、


磁束の時間微分(dΦ/dt)は電圧になります。
(回転数を保持した状態で)負荷を並列にするといくらでも電流が流れるか、というと、実際には発電機の内部にある抵抗やインダクタンスが電流を制限するため、いくらでも流れる、という具合にはいきません。

仕事率は#1、#3さん回答にあるように、電圧(起電力)*電流です。
また、発電機の変換する電力(仕事率)を考えるときには、回転数だけでなく、回すために必要なトルクを考える必要があります。

この回答への補足

ありがとうございます。
2はそれはわかってはいるのですが、原理を知りたかったのです。

それにしても、コイルの両端をつなげて回転させると、どういう現象が起きるのでしょう。他の方にも質問させてもらいましたが。

補足日時:2009/05/29 21:27
    • good
    • 0
この回答へのお礼

終了しました。
ありがとうございました。

お礼日時:2009/06/02 17:55

>>一回転の電力は回転速度の二乗に比例する


>OK

すいません。よくみたら、ここはOKじゃなかった。
「一回転の電力」というのは、表現としてもそもそも変です。意味をなしてない。

「一回転あたりの仕事量」とかなら表現としてはOKです。
そして、「一回転あたりの仕事量」は、回転速度の1乗に比例します。
    • good
    • 0

1.まず、電圧が上がったからといって、電流がそれに比例して上がるとは限りませんが(極端な話、発電機に何もつながっていなければ、電流は常に0です)、とりあえず、負荷が、抵抗だということにしておきましょう。


そうだとして、
>回転数に比例して電圧が上がり、
OK
>結果電流も上がって、
OK
>一回転の電力は回転速度の二乗に比例する
OK
>だとしたら時間当たり出力は3乗に比例する
違う。というか、ここでいう「出力」というのは何のことを指していますかか?仕事?仕事率?
そもそも「電力」自体が、「単位時間あたりの仕事(単位時間あたりのエネルギー)」のことです。
なんで、もっとも普通に、出力=仕事量(生み出したエネルギー)、という定義だとすれば、「単位時間当たりの出力」は、つまり「電力」のことです。というわけで、出力は2乗に比例します。

2.
起電力は電圧のことです。

>負荷を並列に数を増やすと抵抗が減って、それに応じていくらでも電流を流せるはず
Yes。
ただし、負荷の抵抗値を減らせば減らすほど、電流がたくさん流れる=消費電力が増えます。これは、つまり、発電機をその速さで回すのがどんどん大変になっていくということです。端的にいえば、同じ回転速度を維持しようとすると、発電機を回すハンドルがどんどん重くなっていきます。(必要なトルクが増える)

>仕事=抵抗×ストローク
式が意味していることがよくわからない。

そうですね。全体的に、質問者さん自身も感じておられるようですが、
用語(電圧、電流、電力、仕事、磁束など)の理解がかなり曖昧なようです。可能なら、高校の物理の教科書をきちんと読むとよいのですが。

この回答への補足

1.
 私がいろんなものを読むときに、電力を仕事「率」として読んでなかったのが遠因かもしれませんね。
 質問を書いた後、磁束をクーロンに近似して考えれば、電流はクーロンの時間変化、電圧を抵抗の勾配のように理解して、回転数の二乗に比例と考えることができましたが、自分だけの解釈でなく、人の理解を知りたいと思っていました。

2.
 makamraさんへの補足にも書いたのですが、
 すると、コイルの両端をつなぐと、回転の始めにものすごい抵抗力がかかり、コイルが熱を持って抵抗値を上げるまでの間、小さな発電機でも極めて強力なブレーキとして作用する、ということになりそうですが、そうなるのでしょうか? 

補足日時:2009/05/29 21:25
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q交流発電機の出力電圧は負荷によらず回転数比例ですか

固定子に出力巻線、回転子に永久磁石(でなくても、とりあえずは磁束一定)を用いた発電機で、外力で回転子を回転させた場合、無負荷であれば、出力電圧は回転数に比例すると思います。
ここで発電機交流出力に負荷を接続した時に、外力が一定であれば回転数が下がって出力電圧も低下すると思います。
Q1)このときの低下した回転数と出力電圧の関係は比例しますか?
Q2)外力調整で回転数を維持した場合は(負荷によらず)電圧も維持されるのでしょうか?

設備損失は考慮せず、理論値としての動作として、ご回答お願いします。
私としては両者ともyesと思っています。
モーターであれば、回転子と固定子間の位相やすべりで供給電力が負荷に応じる関係でしょうが、発電機ではどうなるのかと言う疑問です。

Aベストアンサー

No1です。

最初の質問内容に関してですが、そもそも同期発電機では回転数を変えると起電力の周波数が変わってしまうため、実際には回転数を一定にすることが条件です。
ですから、電圧は界磁電流を変えることにより、Φを変えて調節します。

永久磁石を使った場合は、一定周波数では起電力は一定です。
回転数を変えると、周波数が変わりますが起電力は回転数に比例します。

さて、
>負荷と発電機損失が同等で、過負荷状態の動作図である(もちろん判り易く誇張されていることは判りますが)。

これは誇張ではありません。
実際に火力発電所で使われている発電機では、出力電圧は起電力の半分以下になることもあります。

>・出力Vに対するIの位相差が大きすぎる。

力率は遅れ0.8 くらいが一般的です。そのときθ=-36.9゜ですから、図はやや大きい程度です。

>これを、負荷(低後負荷)に対してZa(同期インピーダンス)が充分小さい領域で、或いは、発電機の基本とした理想回路

同期発電機の同期インピーダンスは非常に大きいです。
これを小さくすると現実離れした架空のものになります。
ただ、ほとんどがリアクタンスX分で、抵抗分は小さいので、電力損失はそれほど大きくはありません。

>変圧器は、電圧は巻き数比、一時側V1*I1=2次側V2*I2、インピーダンスは巻き数比の二乗の関係、というのが基本動作です。もちろん電力伝送では損失も大きな要素ですが。
発電機ではこういう考え方はできないのでしょうか

質問の意味がよくわからないのですが…

・入力=出力ということであれば、変圧器は効率がよい(90数%以上。大型器では99%以上)ので、近似的に理想変圧器を用いますが、発電機や電動機の場合は効率90%前後です。(可動部があるものは、機械的な損失があるので)

・もちろん損失を無視して効率100%とするのであれば、エネルギー保存則からすべてのものは入力=出力が成り立ちます。
 ただ、そうすると永久運動機関もできるわけで、現実ばなれしてくると思います。

No1です。

最初の質問内容に関してですが、そもそも同期発電機では回転数を変えると起電力の周波数が変わってしまうため、実際には回転数を一定にすることが条件です。
ですから、電圧は界磁電流を変えることにより、Φを変えて調節します。

永久磁石を使った場合は、一定周波数では起電力は一定です。
回転数を変えると、周波数が変わりますが起電力は回転数に比例します。

さて、
>負荷と発電機損失が同等で、過負荷状態の動作図である(もちろん判り易く誇張されていることは判りますが)。

これは誇張ではあ...続きを読む

Q同期発電機の発電原理

同期発電機はなぜ電力量が変化するのですか?

P=ω・T より
原動機からの機械入力は、回転速度は一定なので、トルクとして上昇することは判ります。

電気理論側からみれば
e=B・l・v
起電力を生むには、回転速度、導体長は一定なので磁束密度が変化しなければならないと推測しています。

一般的に界磁電流は制御され、発電機端子電圧は一定に保たれるが、界磁電流自体は発電機出力に比例していることは知ってます。
これは電気子反作用による減磁を打ち消すためと理解してます。

これらの理屈がつながらず困ってます。
(1)トルクと磁束の変化はどのような関係があるのですか?
(2)発電機端子電圧一定でも、発電機出力により界磁電流は変化しますが、
これは、電気子反作用以外に理由があるのでしょか?

Aベストアンサー

起電力とは発生電圧のことで、単位は[V]です。電力という字が使われていても電力[W]ではありません。これが勘違いの元ではありませんか? 発電機の起電力とは電機子コイルに生じる電圧のことで、無負荷時には端子電圧と同値です。
電力は電圧と電流の積なので、電流を無視して説明は出来ません。電圧(起電力)がどんなに高くても電流がゼロなら出力電力はゼロですから。
発電機に負荷を接続すると電流が流れ、その電流に比例したトルクが発生します。電動機と同じ理屈ですが、電流の向きが電動機とは逆なので、トルクの向きも電動機とは逆つまり回転方向と逆向きのトルクが生じ、原動機(タービンやエンジン)には負荷トルクがかかることになります。
(質問1)トルクと磁束の変化はどのような関係があるのですか
→磁束はトルクに直接的には関係しません。但し、磁束が増えると起電力が高くなり、その結果、負荷電流が増加すればそれによってトルクも増えます。
(質問2)発電機端子電圧一定でも、発電機出力により界磁電流は変化しますが、これは、電気子反作用以外に理由があるのでしょか?

発電機の出力と界磁電流は無関係ですが、出力が増えると電機子回路のインピーダンスにより電圧降下が増えて出力電圧が低下するので、それを修正するために、外部に設置された自動制御回路(AVC)の働きによって界磁電流を増やして電圧を一定に保つようにします。
なお、このような基本的な理屈を理解するためには、電機子反作用などの副次的な現象は無視してください。

起電力とは発生電圧のことで、単位は[V]です。電力という字が使われていても電力[W]ではありません。これが勘違いの元ではありませんか? 発電機の起電力とは電機子コイルに生じる電圧のことで、無負荷時には端子電圧と同値です。
電力は電圧と電流の積なので、電流を無視して説明は出来ません。電圧(起電力)がどんなに高くても電流がゼロなら出力電力はゼロですから。
発電機に負荷を接続すると電流が流れ、その電流に比例したトルクが発生します。電動機と同じ理屈ですが、電流の向きが電動機とは逆なので...続きを読む

Q3相電動機の消費電力の求め方

3相電動機の消費電力の求め方について質問です。

定格電圧 200V
定格電流  15A
出力   3.7KW

上記の電動機ですが実際の電流計指示値は10Aです。
この場合の消費電力の求め方は
√3*200*15=5.1KW
3.7/5.1*=0.72
√3*200*10*0.72=2.4KW
消費電力 2.4KW

このような計算で大丈夫でしょうか?
宜しくお願いします。

Aベストアンサー

出力は軸動力を表しているので、消費電力はそれを効率で割る必要があるかと思います。
概算で出してみると、定格での効率が85%程度と仮定すると、定格時の消費電力は3.7/0.85=4.4kW程度になります。
この時の一次皮相電力は、5.1kVAで、無効電力Qnは√(5.1^2-4.4^2)=2.6kVar程度になります。

この無効電力は励磁電流が支配的でしょうから、負荷によらず変わらないとすると、軽負荷時に線電流が10Aになったときの皮相電力は√3*200*10 で3.5kVAで、このときの有効電力は√(3.5^2-2.6^2)=2.3 kW という具合になりそうに思います。

Qモーターのトルクと回転数

なぜモーターのトルクと回転数は反比例の関係になるのですか?

Aベストアンサー

質問中には書かれていませんが、モーターの出力が一定のもとで
ということが必須の条件です。

モータ理論の基礎中の基礎で 出力(W)=角速度×トルク
すなわち
P=ωτ  但しP:出力 ω:角速度(2π×回転数/60) τ:トルク

出力が一定であればモータ速度とトルクは相反関係にあります。
尚通常のモータにおいては、出力が一定ということはまずありませんので
負荷トルクの変動に比例して出力(=一般てきには入力電流)が変動
します。

Q発電機の出力変化と電圧調整の違いは?

はじめまして。
昨年、電験3種に合格し、現在、電験2種取得に向け勉強している者です。

発電機出力はどの様にして変化させているのでしょうか?
・原動機の入力を変化させていることは知っています。

電圧調整・出力変化ともに、界磁電流の調整(=内部誘起電圧の変化)を
伴うと考えており、これらの違いは理論式{P=(Vs・Vr・sinδ)/X}より、δ(相差角)の変化であろうと考えてます。

では、どうやってδは決まるのでしょうか?
P-δ曲線に従うとしても、P-δどちらの変化が先なのか解りません。
また、AVRによる電圧調整時とは何が違うのでしょうか?

よろしくご回答をお待ちしてます。

Aベストアンサー

>電圧調整・出力変化ともに、界磁電流の調整(=内部誘起電圧の変化)・・・  は少しだけ理解が違うようです。
火力発電所の出力を増加する場合は、まず、タービンの蒸気量を増やします。それによって発電機への機械入力が増えます。その結果、内部相差角も増えます。エネルギーは発電機で蓄積できないので、電気出力は入力に追従して増加します。このままだと発電電圧は上昇しますが、出力制御とは別にAVRが働いて励磁を調整して電圧は維持されます。AVRは無効電力を増減して、つまり力率を変えて電圧を制御します。有効電力(出力)は調整しません。同期調相機と同じです。

Q出力と周波数について

現在、ある施設で主任技術者をしております。
蒸気タービン発電機を系統連系し、売電もおこなっています。
しかし、私は発電機に関してあまり知識がなく人から聞かれても困ってしまう始末です。
そこで、どなたか、次の私の質問に答えていただけませんか。

1.電力会社側から需要家を見た場合、需要が発電より多くなった場合には、なぜ、発電機の周波数が下がるのでしょうか。逆に需要が発電より少なくなった場合には、なぜ、発電機の周波数が上がるのでしょうか。

2.1のような状態の時には、ガバナが、定格の回転数になるように蒸気量を調整すると理解しています。ガバナのに関する事項で、ガバナフリー運転という言葉を聞きますが、どういう運用か解りません。教えて下さい。

3.需要家から見た場合、需要家内に設置されている系統連系された発電機についてですが、無限大母線に接続されている状態なので、”周波数、電圧が支配されている”と聞いたことがありますが、これは、「相手側(電気事業者)の発電機の容量が大きすぎるため、需要家の発電機において仮に周波数や電圧の変動が起こっても、相手側に影響しない」ということでしょうか。もし、仮に需要家の発電機が莫大大きいものであった場合は、電圧、周波数の変動が、相手側(電気事業者)の系統に影響を与えるのでしょうか。

4.同じく需要家から見た場合、発電機において出力を出すために、蒸気タービンのガバナの設定を数%上げることになりますが、実際にはタービンの回転数は上がりません。これは、
「ガバナの設定を数%上げた時には蒸気量が増えるため、回転子が固定子に対して回転方向に進んでしまい、角度差ができ、この角度差のまま定格回転速度で回転し、この角度差をなくそうとする力(回転子と固定子が引き合う力)が出力となる」
という理解でよいでしょうか。

現在、ある施設で主任技術者をしております。
蒸気タービン発電機を系統連系し、売電もおこなっています。
しかし、私は発電機に関してあまり知識がなく人から聞かれても困ってしまう始末です。
そこで、どなたか、次の私の質問に答えていただけませんか。

1.電力会社側から需要家を見た場合、需要が発電より多くなった場合には、なぜ、発電機の周波数が下がるのでしょうか。逆に需要が発電より少なくなった場合には、なぜ、発電機の周波数が上がるのでしょうか。

2.1のような状態の時には、ガバナ...続きを読む

Aベストアンサー

1.負荷が少なくなると、タービン出力が変化していない場合、回転速度が高くなって、周波数が上昇します。電圧も上昇します。負荷が多くなるとその逆で、周波数が低下します。

2.1の理由により、負荷の変動によって発電機の回転速度が変化するのですが、その変化をガバナー(速度調整装置)の機能を利用して周波数を一定とするように制御する運転をガバナーフリー運転と言います。なお、多くの場合、自所使用分の負荷変動が大きいときに行う運転で、電気事業者の系統の調整を行うには、それなりに大きな出力を持った発電機を必要とします。

3.発電機は系統によって支配されており、タービン出力が変化しても、回転速度が変化することは(まず)ありません。日本国内の電力会社の送電線はすべて連結されていますので、一需要家から見ると、無限母線に見えます。しかし、電力会社も複数の発電所や、変電所から成り立っており、それらの特性や、送電線経路により、特定の需要家が及ぼす影響が大きくなる場合もあります。大きな発電設備を持つ場合、当然電気事業者の設備に影響を与えます。接続されている変電所の入力が増減することになりますから、その分を他の発変電所と調整する必要が出てきます。

4.理論上の角度差は、電気的角度で±90度です。当然進み状態が発電している状態です。この角度を超えた場合脱調といいます。系統に接続されていない単独運転状態の場合は、回転速度も変化します。
単独運転状態において、ガバナーに調整を行わないで負荷を変化させた時の回転速度の変化の割合を速度調停率といい、この値の大小によって、系統に与える影響が異なります。

1.負荷が少なくなると、タービン出力が変化していない場合、回転速度が高くなって、周波数が上昇します。電圧も上昇します。負荷が多くなるとその逆で、周波数が低下します。

2.1の理由により、負荷の変動によって発電機の回転速度が変化するのですが、その変化をガバナー(速度調整装置)の機能を利用して周波数を一定とするように制御する運転をガバナーフリー運転と言います。なお、多くの場合、自所使用分の負荷変動が大きいときに行う運転で、電気事業者の系統の調整を行うには、それなりに大きな出力を持...続きを読む

Q発電機の4.5KVAというのは、4500W使用することが可能ということ

発電機の4.5KVAというのは、4500W使用することが可能ということですか??すいませんが、どなたか教えてください。

Aベストアンサー

発電機の容量[kVA]は皮相電力の値を示します。
電源が3相 200Vですと√3×E×Iにて計算しますので
I[A]=4.5[kVA]/(√3×200[V])≒13[A]
になります。
即ち、出力電流が13[A]までの負荷を加えることができます。

4500[W]が消費電力の値ですと、この負荷の力率を調べ、
消費電力の値から入力電流を計算することになります。

消費電力[W]=入力電力[W]ですので、
入力電力[W]=√3×E[V]×入力電流[A]×力率
となります。
入力電流[A]の値は、次式で計算することができます。
入力電流[A]=入力電力[W]/(√3×200[V]×力率)

負荷装置の消費電力が 4500[W]、負荷装置の力率が 0.85
としますと、
入力電流[A]=4500[W]/(√3×200[V]×0.85)
入力電流[A]≒15.3[A]
となります。

出力電流:13[A]<入力電流:15.3[A]
ですので、運転不可能となります。

なお、負荷装置の力率が[ 1.0 ]であれば、
出力電流:13[A]=入力電流:13[A]
になりますので、運転可能となります。

実際には発電機容量に多少の余裕のある機種を選定して運転します。

発電機の容量[kVA]は皮相電力の値を示します。
電源が3相 200Vですと√3×E×Iにて計算しますので
I[A]=4.5[kVA]/(√3×200[V])≒13[A]
になります。
即ち、出力電流が13[A]までの負荷を加えることができます。

4500[W]が消費電力の値ですと、この負荷の力率を調べ、
消費電力の値から入力電流を計算することになります。

消費電力[W]=入力電力[W]ですので、
入力電力[W]=√3×E[V]×入力電流[A]×力率
となります。
入力電流[A]の値は、次式で計算することができます。
入力電流[A]=入力電力[W]/(√3×200[V]×力率)

...続きを読む

Q電気モーターに負荷がかかったとき電流値が上がるのは何故

電気モーターに負荷がかかったとき電流値が自動的に上がって、ひどいときにはブレーカーが働いて電気が止まったりします。
何故負荷がかかると電流が大きくなるのか、優しく教えて下さい。

Aベストアンサー

#2です。

直流モータでイメージが湧くなら、交流でも同じです。

誘導電動機は、固定子によって作られる回転磁界によって
フレミングの右手の法則によって回転子に誘導起電力が発
生して、電流が流れます。
これは、回転磁界側を固定して、回転子が逆方向に回って
いると考えるとわかりやすいと思います。

すると、その電流によってフレミングの左手の法則によって
力が発生します。これは、図を書いて考えるとすぐにわかりま
すが回転磁界の方向と一致します。

こうして、誘導電動機は回転磁界と回転子の間に滑りをもつ
事によってトルクを発生させて回っています。

ここまでわかったら、誘導電動機の滑り-トルク曲線は書けますよね?

ですから、外から力が加わると回転数が落ち(滑りが大きくなり)
トルクが大きくなってバランスする回転数で回ります。

フィードバック制御が無い場合は、ここで終わりです。

しかし、多くの場合回転数制御をするために、フィードバックが
ありますので、回転数が落ちるとトルクを大きくして、元の回転数に
戻そうと制御します。

方法は、回転磁界を速くして滑りを大きくするか、回転磁界の磁束
密度を大きくするかのどちらかです。

多くは、3Dマップによって周波数と磁束密度を制御しますが、
簡単にインバーターで周波数を上げて、回転磁界を速くしてやれば
回転が上がります。磁束密度を上げる場合は電流を増やすわけです
が、どちらの場合も多くのエネルギーを与えるますので、電圧が一定
ならば電流が増えます。

同期電動機も同じようなものです。

#2です。

直流モータでイメージが湧くなら、交流でも同じです。

誘導電動機は、固定子によって作られる回転磁界によって
フレミングの右手の法則によって回転子に誘導起電力が発
生して、電流が流れます。
これは、回転磁界側を固定して、回転子が逆方向に回って
いると考えるとわかりやすいと思います。

すると、その電流によってフレミングの左手の法則によって
力が発生します。これは、図を書いて考えるとすぐにわかりま
すが回転磁界の方向と一致します。

こうして、誘導電動機は回転磁...続きを読む

Qモーター負荷が増大すると電流値が増大するのは?

 
モーターの負荷と電流値の関係は?
http://oshiete.goo.ne.jp/qa/6607162.html

の質問を立てて回答をいただきました。
そこで、モーターの回転を妨げる方向の負荷が大きくなった場合、電流値は増大するは
仕事の量が増大するというのが、説明のひとつでした。

概念的(たとえば、P=I×V の考え方で、P が増大するためには、Iが増大するからだという説明だと思います。)にはそうだと思うのですが、ミクロ的な電気の基本で考えると腑に落ちません。

それでは、V=I×R の考え方ではどうなるでしょうか?

電圧 V は、変わらないので、電流 I が増大するのは、抵抗 R が減少するからでしょうか?
モーターは、鋼材をコイルで撒いて電磁石を作っています。
その磁力をつかって回転力を作っていると思いますが、コイルに流れる電流が増大するのが、V=I×R の式から腑に落ちません。

説明していただけると、嬉しいです。
よろしくお願いします。

電気は詳しくないので、誤った理解、不足の情報があれば補足・訂正いたします。
 

Aベストアンサー

オームの法則についてですが、交流回路でコイルやコンデンサーを含む回路の場合、単純に抵抗として考えたのでは成り立ちません。これは交流回路では電流が必ずしも電圧と同じタイミングでは流れないからです。例えば、ひとつのコイルがあるとして、この直流抵抗をテスターで測って、一定の電圧を掛けたときの電流の値を測ったとき、直流では計算どおりになりますが、交流では計算値より少ない電流しか流れません。そして交流の周波数が高くなるほど電流はへっていきます。コイルにはこのような性質があります。従って、コイルを含んだ回路では単純に抵抗としては計算しません。インダクタンスという値を使い、周波数に応じた抵抗値を持つ抵抗として計算します。ある周波数での実際の抵抗値で計算すればオームの法則は成り立ちますが、周波数やコイルの持つインダクタンスによって変化するのでV=I×Rという式は用いません。モーターの場合はこの周波数にあたる部分が回転によってコイルが切り替えられる回数にあたります。

オームの法則が成り立たないという表現はちょっと言葉が足りない感がないでもありませんが、交流回路や、コイルに対してのスイッチングが行われる回路では、単純に直流抵抗で考えても正しい結果は得られません。これをさして言われた言葉であると考えるべきでしょう。

また、コンデンサーを含んだ回路も直流の考えではまったく成り立ちません。コンデンサーは直流電流に対しては、コンデンサーの容量と電流によって決まる時間だけ電流が流れて、それ以降はまったく流れなくなります。従って、これも単純にオームの法則を当てはめることは出来ません。テスターである程度大きな容量のコンデンサーの抵抗値を測って見ると判りますが、つないだ瞬間はほぼ0Ω近くの値を示しますが、時間とともに値が大きくなってしまいますので測ることすら出来ません。コンデンサーはコイルとは逆に周波数が高くなるほど抵抗値が小さくなる性質があります。

電気回路図などを見ると、コイルの値を示す単位としてΩが用いられることはなく mHやμH(ミリヘンリー・マイクロヘンリー)等という単位が用いられていますし、コンデンサーは μFやnF(マイクロファラッド・ナノファラッド)等という単位が用いられています。これは電圧と電流の関係に時間という要素が加わり、単純な抵抗のように表すことが出来ないからです。

また、交流回路では位相という問題もかかわってきますが、これは、コイルやコンデンサーなどの素子についてしっかり理解したうえで無いと説明自体に無理がありますので割愛します。

交流回路やコイルやコンデンサーに対してスイッチングを行う回路は直流回路と同じ考え方は出来ないということです。しかし、コイルに発生する逆起電力や電流の遅れ、コンデンサーに発生する電流の進みや、静電容量を加味した数値で計算すればオームの法則と矛盾することはありません。モーターの場合、直流モーターであってもコイルに対するスイッチングが行われるうえに、磁界の中をコイルが動いているという複雑な要素があるため、それらを加味して計算しない限り正しい計算は出来ませんし、交流モーターではコイルに与えられる電流が交流ですので、この時点で直流回路の計算は成り立たない上に、磁気回路の渦電流などの影響も考慮しないと正しい計算結果は得られません。

従って、質問者が行ったV=I×Rとう式ではそれらの要素がまったく考慮されていないので、単純な抵抗のみ回路でしか成り立ちません。

オームの法則についてですが、交流回路でコイルやコンデンサーを含む回路の場合、単純に抵抗として考えたのでは成り立ちません。これは交流回路では電流が必ずしも電圧と同じタイミングでは流れないからです。例えば、ひとつのコイルがあるとして、この直流抵抗をテスターで測って、一定の電圧を掛けたときの電流の値を測ったとき、直流では計算どおりになりますが、交流では計算値より少ない電流しか流れません。そして交流の周波数が高くなるほど電流はへっていきます。コイルにはこのような性質があります。従...続きを読む

Q単相モーターと三相モーターの違い。その利点と欠点。を教えてください。

位相の数が違う。といってもその「位相」って言葉から複雑怪奇。バカにでも理解できるようにわかりやすい言葉で教えてください。
単相と三相の利点と欠点。使い分け方。マメ知識なんぞ教えてください。
恥ずかしくて誰にも聞けないんです。

Aベストアンサー

一番大きな違いは、簡単な構造で、起動できるか(自分で回転を始められるか)どうかだと思います。一番簡単な構造である 誘導電動機で三相の場合はスイッチを入れるだけで回転を始めますが、単層の場合は、唸っているだけで回転を始められません。単相電動機でも何らかの方法で回転させれば、(例えば手で回しても良い、回転方向は、回してやった方向で決まる。)回転を続けます。この方法には、コンデンサー起動、反発起動等がありますが 1/2HPぐらいまでの小さなものに限られます。町工場など住宅地では、三相交流の供給が受けられませんので苦労したこともありました。


hp


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報