【先着1,000名様!】1,000円分をプレゼント!

以下の問題がわかりません・・・。解説をお願いしたいです。

半径a, 質量M の一様な円板の中心からb だけ離れた点を支点として円板を円直面内で微小振動させ
た。この振動の周期T を求めよ。このT を最小にするb 及びその時の周期Tmin を求めよ。


よろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

円盤の慣性モーメント I = (1/2)Ma^2 + Mb^2


円盤に加わる力(重力)のモーメント N = bMgsinθ ≒ = bMgθ(微小振動なので)

以上から運動方程式は

Id^2θ/dt^2=-bMgθ

これは単振動の方程式なので、振動の角周波数= √(bMg/I)

周期(T) = 2π/角周波数 = 2π√(I/(bMg)) =2π√(1/(2gM))√(a^2/b+2b)

Tを最小にするbは上の a^2/b+2b を最小にするので

a^2/b+2b を b で微分すると -(a^2/b^2) + 2 = 0 ⇒ b = a /√(2)
    • good
    • 4

 剛体振り子ですね。

以下のページの解説で分かると思います。

http://www.las.u-toyama.ac.jp/physics/yoshida/20 …

 慣性モーメントの計算方法も必要であれば、以下のページの円柱でOKでしょう。

http://www.buturigaku.net/main01/RigidBody/Rigid …
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q剛体振り子の周期

剛体振り子の運動方程式 I(θの2回微分)=-Mghθ
から、普通に
周期T=2π√(I/Mgh)
と教科書に書いてあるのですけど、この周期Tはどうやって求めたのでしょう?計算の仕方がわからないので教えてください☆お願いします!
T=2π/ωと、ω=(θの微分)を用いるのはわかるんですけど・・・。

Aベストアンサー

これはθに関する微分方程式を解かなければいけません。
すなわち
dθ^2/dt^2 = -Aθ
(A=Mgh/I)
これは、よく教科書に書いてある形の微分方程式なのですが、解き方をここに書くのは、ちょっと面倒なのでご勘弁ください。

代わりに、方程式から周期を求める簡易な方法を紹介します。

θはtの三角関数になることは、わかっているものとします。

そうすると
θ = a・sin(ωt+c)
tで一回微分すると
dθ/dt = ab・cos(ωt+c)
もう1回tで微分すると
I = dθ^2/dt^2 = -a・ω^2・sin(ωt+c)

これらを当初の方程式に代入すれば
-a・ω^2・sin(ωt+c) = -A・a・sin(ωt+c)
よって
ω=√A=√(Mgh/I)
T=2π/ω=2π√(I/Mgh)

Q円盤の慣性モーメントが求めれません。

面密度ρの一様な円盤の中心周りの慣性モーメント

J=(mR^2)/2
となるのですがどうしてなるのか分かりません。

よろしくお願いします!

Aベストアンサー

慣性モーメントの定義から入りましょう。
回転軸からrだけ離れた位置にある微小要素の慣性モーメントdJは次式で与えられます。
dJ=r^2dm (1)

ここで、dmは微小要素の質量です。
この円盤の慣性モーメントJは、円盤全域でdJを足し合わせれば(積分すれば)求まるわけです。
つまり、
J=∫dJ=∫r^2dm (2)

となるわけです。
ここで、dmは次のように表されます。
dm=ρdA (3)

ρは面密度、dAは円盤の微小要素の面積です。
次に、dAをrを使って表すことを考えましょう。
dA=(半径r+drの円の面積)-(半径rの円の面積) (4)

で求まります。実際にやってみます。
dA=π(r+dr)^2-πr^2
=π(r^2+2rdr+dr^2-r^2)
=π(2rdr+dr^2) (5)

となるんですが、drはめっちゃ小さいんで2乗の項は無視します。
dA=2πrdr (6)

ですね。この式(6)を式(3)に代入します。
dm=2πρrdr (7)

式(7)を式(2)に代入します。
J=∫r^2・2πρrdr
=2πρ∫r^3dr (8)

見にくいんで書きませんでしたが、rの積分区間は0~Rです。
回転軸から端っこまでですから♪
積分を実行すると、
J=(πρR^4)/2 (9)

になります。
ここで、円盤の質量mは次式で与えられます。
m=πρR^2 (10)

式(10)を式(9)に代入すれば出来上がりです♪
J=(mR^2)/2 (11)

慣性モーメントの定義から入りましょう。
回転軸からrだけ離れた位置にある微小要素の慣性モーメントdJは次式で与えられます。
dJ=r^2dm (1)

ここで、dmは微小要素の質量です。
この円盤の慣性モーメントJは、円盤全域でdJを足し合わせれば(積分すれば)求まるわけです。
つまり、
J=∫dJ=∫r^2dm (2)

となるわけです。
ここで、dmは次のように表されます。
dm=ρdA (3)

ρは面密度、dAは円盤の微小要素の面積です。
次に、dAをrを使って表すことを考えましょう。
dA=(半径r+drの円の面積)-(半径rの円の面積) (4)

...続きを読む

Q微小振動する角振動数

はじめまして。
おそらく振り子の問題だと思うのですが、あまりよく理解できません。
簡単な問題かもしれませんが、ご回答お願い致します。

図のように、質量m、長さ12Lの細い一様な棒が、棒の中心からhの距離にある点Hを支点として微小振動した場合の角振動数ω(h)を求めよ。
ただし、点Hを通る軸周りの慣性モーメントは、
I(h)=12mL^2+mh^2 とする。

図を解説すると、棒を縦に立てて(少し傾いている)、棒の中心から棒に沿って距離h上方を支点Hとしています。

教科書の似た問題を見ると、この問題と関係ないかもしれませんが、
回転の式 I・dω/dt=-mghsinθ

となっていますが、なぜマイナスになるのか分かりません。
微小振動ならsinθ≒0になると思うのですが、この考え方は間違っていますでしょうか?

慣性モーメントと回転の式などの正負の関係があまり理解できないので、この点に関しても、よろしければご回答お願いいたします。

Aベストアンサー

>回転の式 I・dω/dt=-mghsinθ
>となっていますが、なぜマイナスになるのか分かりません。

ω=dθ/dt はθが増える方向が正ですよね? 右辺のトルク
(力のモーメント)はθを増やすまいとする方向だからです。
通常θは反時計回りを正にとります(本当はθは回転方向を
ねじの回る方向としてねじの進む方向へのベクトルとして
扱うのが普通です)。一方トルクも反時計回りに回転させる
作用を正とします(トルクももちろん通常はθと同じ決め方を
したベクトルとして扱います)。今両者は逆向きですよね?
同じ向きだったらどんどん回転が速くなっていって,振動には
なりません。これは,もっと初歩的にはばね振り子の運動方程式
m dv/dt = -kx と形式的に同じ形をしていますよね。

>微小振動ならsinθ≒0になると思うのですが、この考え方は間違っていますでしょうか?

ダメです。それでは運動することになりません。
sinθ=θ-θ^3/3!+・・・という無限級数からθの1次の項まで
とって近似します。すなわち,sinθ≒θと近似します。
そうすることで,ばね振り子と同じ形
m d^2x/dt^2 = -kx ←→ Id^2θ/dt^2 = -mghθ
になって初歩的に解くことができるようになるわけです。

>回転の式 I・dω/dt=-mghsinθ
>となっていますが、なぜマイナスになるのか分かりません。

ω=dθ/dt はθが増える方向が正ですよね? 右辺のトルク
(力のモーメント)はθを増やすまいとする方向だからです。
通常θは反時計回りを正にとります(本当はθは回転方向を
ねじの回る方向としてねじの進む方向へのベクトルとして
扱うのが普通です)。一方トルクも反時計回りに回転させる
作用を正とします(トルクももちろん通常はθと同じ決め方を
したベクトルとして扱います)。今両者は逆向きですよね?
...続きを読む

Q振り子の慣性モーメントの求め方

鉄の棒の先に立方体の重りを付けた、振り子の慣性モーメントを求めたいのですが、振り子全体の慣性モーメントの求め方と、鉄の棒と重りのそれぞれの慣性モーメントの求め方を教えてください。よろしくお願いします。

鉄の棒(長さL=275mm、質量m1=42.2g)と立方体(一辺の長さa=30mm、質量m2=226.2g)は以上のようになっています。
できれば詳しく教えていただけたら幸いです。よろしくお願いします。

Aベストアンサー

慣性モーメントは、
回転中心をどこに取るかによって異なります。

定義は
http://ja.wikipedia.org/wiki/%E6%85%A3%E6%80%A7%E3%83%A2%E3%83%BC%E3%83%A1%E3%83%B3%E3%83%88
を見てください。

おそらくは重心周りの慣性モーメントだと思うので、
鉄の棒では密度を線密度に置き換えて積分してください。
鉄の棒
I=∫[-L/2→L/2] m1/L * r^2 dr
立方体
I=∫∫∫[x:-a/2→a/2 y:-a/2→a/2 z:-a/2→a/2] m2/a^3*√(x^2+y^2+z^2) dxdydz
を計算します。

振り子全体の慣性モーメントは、回転中心からの慣性モーメントだと思うので、積分によって求めた、鉄の棒と立方体の重心周りの慣性モーメントを用いて、運動エネルギーを出します。

平面上の振り子運動だと思うので、
角度をθ、重心までの距離をr1,r2などと置いて、それぞれの重心のx座標、y座標をr、θで表します。
速度v1,v2を微分によって求めます。

ここで、運動エネルギーは、並進の運動エネルギーと回転の運動エネルギーの和なので、
E = 1/2 mv^2 + 1/2 Iω^2 (*)
の形であらわされます。

これを用いて、振り子の運動エネルギーを出して、この運動エネルギーを
E=1/2 Iω^2の回転のみのエネルギーとした時の、Iにあたる量が振り子の慣性モーメントです。
(振り子の回転中心は動かないので上記の形にかけます)
(鉄の棒と立方体は重心中心の慣性モーメントなので、重心が動くので(*)の形でかけます)

慣性モーメントは、
回転中心をどこに取るかによって異なります。

定義は
http://ja.wikipedia.org/wiki/%E6%85%A3%E6%80%A7%E3%83%A2%E3%83%BC%E3%83%A1%E3%83%B3%E3%83%88
を見てください。

おそらくは重心周りの慣性モーメントだと思うので、
鉄の棒では密度を線密度に置き換えて積分してください。
鉄の棒
I=∫[-L/2→L/2] m1/L * r^2 dr
立方体
I=∫∫∫[x:-a/2→a/2 y:-a/2→a/2 z:-a/2→a/2] m2/a^3*√(x^2+y^2+z^2) dxdydz
を計算します。

振り子全体の慣性モーメントは、回転中心からの慣性...続きを読む

Q中が中空の球の慣性モーメントの求め方について

中が中空の球(球殻)の慣性モーメントの求め方がわかりません。
球の質量をM、半径をaとすると2/3Ma^2となるとは思うのですが、求める過程がわからないのです。
教えてください。

Aベストアンサー

球の中心を原点とした一般的な直交座標と極座標を考えて下さい。

r≠aではρ=0なのでr=aだけを考えればよく、面積分に帰着するわけです。
球の質量はr=aに一様分布なので(面)密度ρ=M/(4πa^2)となります。

それで、座標Ω=(θ,φ)において、z回転軸周りでは面積素片はdS=a^2*sinθdθdφになりますよね。さらに軸からの距離r'=a*sinθです。

あとはI=Mr^2に沿って計算すれば、
(0<θ<π, 0<φ<2π)

I=∬ρr'^2 dS
=ρ∬(a*sinθ)^2*a^2*sinθdθdφ
=ρa^4∬(sinθ)^3 dθdφ
=Ma^2/(4π)*2π∫(sinθ)^3 dθ
=Ma^2/2*(4/3)
=(2/3)Ma^2

と、こんなもんでよろしいのではないでしょうか。
慣性モーメントの計算なんて7年ぶりくらいです。ああ、間違ってないといいけど・・・(自信なくてすみません)

Q加速度と角加速度の関係について

速度と角速度の関係は
中心から質点までの距離がr,質点の速度がv,とすると
角速度ω=v/r [rad/s]
になると思うのですが,
加速度と角加速度の関係は
中心から質点までの距離がr,質点の加速度がa,とすると
角速度α=a/r [rad/s^2]
となるのでしょうか?
ご教示よろしくお願い致します。

Aベストアンサー

半径rが定数とすれば、その通りです。
加速度、角加速度はそれぞれ速度、角速度の単位時間の変化量(時間微分)ですので、加速度は「a=dv/dt」、角加速度は「α=dω/dt」と表せます。
同時に、角速度の式「ω=v/r」の両辺を時間で微分すれば「dω/dt=(dv/dt)/r」となり、この式はすなわち「α=a/r」となります。
ただし半径rそのものが時間関数r(t)の場合はこの限りではありません。

Q剛体の運動

半径b、質量Mの円板を、重心から距離hの点に円板に垂直な軸をつけ、これを水平軸として鉛直面内で振動させる。
(1)微小振動させた時の円板は単振動する。その周期を求めなさい
(2)上の問題で周期を最小にするには、hはどのように選べばよいか?
この2つが自分でやってもよく分かりませんでした。
どうすればいいのでしょうか?

Aベストアンサー

http://oshiete1.goo.ne.jp/kotaeru.php3?q=630224
の grothendieck さんと私の回答をご覧下さい.
特に,私の回答 No.4 がちょうどこの質問の本質的な答になっています.
ただし,今の場合は円板,#630224 の場合は円環ですから
重心周りの慣性モーメントが当然違います.
そのあたりを修正してください.

Q振り子の問題

物理振り子の周期で、T=2π√(I/Mgh)という公式があるのですが、ルートの中身をhで微分すると、なぜ周期の最小が求まるのでしょうか?何方か教えてください。お願いします。

Aベストアンサー

Tがhの関数であるとき、Tの最小値を求める場合、Tをhで微分し、T'=0から最小値を与えるhの候補を見つけますよね?
Tのルートの中身の関数をf(h)とすれば、T'=2π[1/(2√f]*f'
T'=0 とすれば f'=0 になります。
この場合のfは(h>0で)下に凸の形の関数で、最小である極値を一つだけ持つので、最小値を与えるhが求まることになります。

Qボルダの振り子 慣性モーメント

ボルダの振り子で、金属球の質量をm、半径をa、
ナイフエッジから金属球までの長さをlとするとき、
支点回りの慣性モーメントIが
I=2ma^2/5+m(l+a)^2
となるのがわかりません。
この式の導き方を教えていただきたいです。

Aベストアンサー

平衡軸の定理を使っています。
平衡軸の定理とは、ある剛体を考えた時に、
その剛体の重心の周りの慣性モーメントをI(G)とすると、重心から距離hだけ離れた点、の周りの
慣性モーメントIは、I=I(G)+Mh^2で与えられる、
ということです。Mは剛体の質量です。ご質問の場合、I(G)というのは金属球の中心の周りの慣性モーメントです。
この値が、半径aとして、2/5ma^2となります。
その重心(中心)から、距離lだけ離れたナイフエッジ
における慣性モーメントは、平衡軸の定理を使うと
I=I(G)+mh^2=2/5ma^2+m(a+l)^2になるのです。

平衡軸の定理については、定理ということでそのまま
用いて構いません。式の導出が厄介だからこそ、定理として造られているのです。定理の導出まで知りたければ、力学の教科書をみれば分かります。

球の慣性モーメントについても、導出はけっこうやっかいです。球の重心の周りの慣性モーメント
がI(G)=2/5ma^2です。この導出も知りたければ、力学の教科書を見た方が速いです。もしここに書き込むと
かなりゴチャゴチャします。

平衡軸の定理を使っています。
平衡軸の定理とは、ある剛体を考えた時に、
その剛体の重心の周りの慣性モーメントをI(G)とすると、重心から距離hだけ離れた点、の周りの
慣性モーメントIは、I=I(G)+Mh^2で与えられる、
ということです。Mは剛体の質量です。ご質問の場合、I(G)というのは金属球の中心の周りの慣性モーメントです。
この値が、半径aとして、2/5ma^2となります。
その重心(中心)から、距離lだけ離れたナイフエッジ
における慣性モーメントは、平衡軸の定理を使うと
I=I(G)+mh^2=2/5ma^2+m...続きを読む

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング