A 回答 (2件)
- 最新から表示
- 回答順に表示
No.2
- 回答日時:
質問者は二つ勘違いをなさっています。
1.転置複素共役であることがエルミート共役であることの定義であると思っていること。
エルミート共役作用素を行列で表現すれば転置したものの複素共役をとったものになりますが、別にこれは定義ではなく、定義から得られる定理にすぎません。
エルミート共役の定義は下記のサイトでも見てもらえばよいでしょう。
https://ja.wikipedia.org/wiki/%E9%9A%8F%E4%BC%B4 …
この定義にしたがえば、生成演算子のエルミート共役が消滅演算子になることが簡単に確認できます。
2.生成(消滅)演算子が行列ではないと思っていること。
表現方法を変えれば、生成(消滅)演算子を行列として表すことができます。
簡単な例として、調和振動子についてみてみましょう。
調和振動子の固有ベクトルは無限次元となるため、生成演算子、消滅演算子はともに無限次元の行列となります。
一番エネルギーの低い状態をi=1,n番目の状態をi=nとして、状態{x_i}(i=1,2,3,...)というベクトルとして表現します。
生成演算子を表す行列をA=(a_ij),消滅演算子を表す行列をB=(b_ij)とすると
a_ij=(√(i-1))*δ_i,(j+1) δ_j,jはクローネッカーのδ δ_i,j=0(i≠j),1(i=j)
b_ij=(√(j-1))*δ_(i+1),j
となります。
a_ji=(√(j-1))*δ_j,(i+1)=b_ij=b_ij† (b_ijは実数)
であることからA,Bは転置複素共役であることがわかります。
No.1
- 回答日時:
シュレディンガー式とハイゼンベルグ式があって、両者が同じということに由来するから、行列的表現が残されている。
あくまで、シュレディンガー式の表現であったとしても、それは行列的なものと等価であることをお忘れなく。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・街中で見かけて「グッときた人」の思い出
- ・「一気に最後まで読んだ」本、教えて下さい!
- ・幼稚園時代「何組」でしたか?
- ・激凹みから立ち直る方法
- ・1つだけ過去を変えられるとしたら?
- ・【あるあるbot連動企画】あるあるbotに投稿したけど採用されなかったあるある募集
- ・【あるあるbot連動企画】フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
- ・映画のエンドロール観る派?観ない派?
- ・海外旅行から帰ってきたら、まず何を食べる?
- ・誕生日にもらった意外なもの
- ・天使と悪魔選手権
- ・ちょっと先の未来クイズ第2問
- ・【大喜利】【投稿~9/7】 ロボットの住む世界で流行ってる罰ゲームとは?
- ・推しミネラルウォーターはありますか?
- ・都道府県穴埋めゲーム
- ・この人頭いいなと思ったエピソード
- ・準・究極の選択
- ・ゆるやかでぃべーと タイムマシンを破壊すべきか。
- ・歩いた自慢大会
- ・許せない心理テスト
- ・字面がカッコいい英単語
- ・これ何て呼びますか Part2
- ・人生で一番思い出に残ってる靴
- ・ゆるやかでぃべーと すべての高校生はアルバイトをするべきだ。
- ・初めて自分の家と他人の家が違う、と意識した時
- ・単二電池
- ・チョコミントアイス
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
演算子を対角化するとはどうい...
-
正準量子化はなぜ上手くいくのか
-
量子力学において運動量を微分...
-
絶対零度になると物質は分子間...
-
天気予報と量子力学
-
量子力学の運動量について
-
波動関数のプサイとファイの違い
-
なんであんなに難しい問題が解...
-
量子力学の勉強法
-
ファインマンの経路積分
-
解析力学学習前の予備知識とは
-
「量子力学」と「スピリチュア...
-
シュレディンガー方程式 - Wiki...
-
相対性理論と量子力学 どちらが...
-
量子力学を理解するのが難しい...
-
「シュレディンガーの猫」のパ...
-
トーマス因子の導出の仕方
-
量子力学を勉強するために
-
「量子」と「量子化されている...
-
量子力学・前期量子論について...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
量子力学のブラケット記法は〈Ψ...
-
量子力学のスピンに関するこの...
-
宇宙において加法は必ず成立す...
-
量子力学で用いるk-空間、x-空...
-
波動関数のプサイとファイの違い
-
演算子を対角化するとはどうい...
-
量子力学を理解するのが難しい...
-
絶対零度になると物質は分子間...
-
正準量子化はなぜ上手くいくのか
-
^付きの文字の意味
-
以下の量子力学の1次元調和振動...
-
理学部物理学専攻のロードマッ...
-
運動量演算子の交換関係について
-
相対性理論と量子力学 どちらが...
-
物理専門書を読みきる時間
-
量子力学の勉強法
-
ラプラスの悪魔とマクスウェル...
-
共役複素数関数。。。
-
量子力学の波動関数の染み出し効果
-
解析力学学習前の予備知識とは
おすすめ情報