人に聞けない痔の悩み、これでスッキリ >>

トランジスタ増幅回路のひずみがなぜ起こるのかというのを明確に知りたいのです。トランジスタで増幅する場合バイアスをかけますが,なぜそのバイアスよりも振幅が大きければその部分は出力されずひずんでしまうのでしょうか?どの参考書を見てもバイアスが足りなければひずんでしまう。としか書いてありません。またVCE-IC特性曲線で載ってたりもするのですが,回路理論的にどうしてひずむのかを知りたいです。あと,VCEとICにはどのような対応があるのかも知りたいです。よろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

VCE-IC特性曲線を例示し、これについて知る限りのことを記載してください。



>VCEとICにはどのような対応があるのか・・・

トランジスタのコレクタに負荷抵抗が接続され、負荷抵抗の他端が電源(仮にプラス)に接続され、電源マイナスがトランジスタのエミッタに接続された回路(エミッタ共通回路)を考えてみます。

(ベースドライブにより)ICが増加すれば、負荷抵抗中の電圧ドロップが大きくなるので、コレクタ電圧(VCE)は小さくなります。
ICが減少すれば、コレクタ電圧(VCE)は大きくなります。

ICの増減と負荷抵抗両端の電圧が直線関係にある間は「歪」はありません。
どういうときに、直線関係でなくなるか・・・?

これは、VCE-IC特性曲線を理解するためのヒントです。
    • good
    • 4

>>なぜそのバイアスよりも振幅が大きければその部分は出力されずひずんでしまうのでしょうか?


⇒例ですが)深さ1mの水槽(長さは無限大で考えてください)に水を30cmいれてふたをします。この30cmがバイアスです。この水面に波を立てます。波の深さ、高さの最大値ははどの程度になりますか? 答えは、水槽底面からふたまでですね。
それ以上振ろうとしても振れません(出力されない。これを「ずひずんでしまう」という。」)

>>VCEとICにはどのような対応があるのかも
概算ですが理解してください。Re=0で考えます。
出力信号=Vce
    =電源電圧-Ic×Rc
このとき、出力信号>=電源電圧で歪み発生となります。
変化するのはIcです。
    • good
    • 2

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qエミッタ接地増幅回路について教えてください><

教えていただきたいことは2つあります。
(1)エミッタ接地増幅回路はなぜ入出力波形の位相が反転するのでしょうか。
(2)エミッタ接地増幅回路はなぜ入力電圧が大きくなったとき出力波形が歪んでしまうのでしょうか。

1つでもわかる方がいらっしゃいましたらどうか回答よろしくお願いします。

Aベストアンサー

参考URLのトランジスター(エミッタ接地)増幅回路について
Ic-Vce特性と負荷線の図を見てください。
参考URL:
ttp://www.kairo-nyumon.com/analog_load.html

(1)
バイアス電圧を調整して図4の動作点(橙色の点)をVbe特性の中心に設定してやり、その動作点を中心に入力電圧Vbeを変化させてやるとVceとIcが負荷線上で変化して動きます。入力電圧Vbeが増加すると出力電圧Vceが減少し、入力電圧Vbeが減少すると出力電圧Vceが増加します。つまり出力電圧波形の位相は入力電圧の位相が逆になります。つまり、入出力波形の位相が反転することになります。

(2)
入力電圧Vbeが大きくなったとき出力波形が歪んでしまうのは、動作点が負荷線の線形動作範囲の上限に近づくとそれ以上Vceが頭打ちになって、出力電圧波形が飽和してしまいます。言い換えればコレクタ電圧Vceは接地電圧と直流電源電圧Vccの範囲でしか変化できません。その出力電圧波形は入力電圧Vbeが負荷線上の線形増幅範囲だけです。線形増幅範囲を超えるような大振幅の入力Vbeを入力すると出力電圧の波形が飽和して波形の上下が歪んだ(潰れた)波形になります。

お分かりになりましたでしょうか?

参考URL:http://www.kairo-nyumon.com/analog_load.html

参考URLのトランジスター(エミッタ接地)増幅回路について
Ic-Vce特性と負荷線の図を見てください。
参考URL:
ttp://www.kairo-nyumon.com/analog_load.html

(1)
バイアス電圧を調整して図4の動作点(橙色の点)をVbe特性の中心に設定してやり、その動作点を中心に入力電圧Vbeを変化させてやるとVceとIcが負荷線上で変化して動きます。入力電圧Vbeが増加すると出力電圧Vceが減少し、入力電圧Vbeが減少すると出力電圧Vceが増加します。つまり出力電圧波形の位相は入力電圧の位相が逆になります。つまり、入出力波...続きを読む

Q増幅回路について

エミッタ接地の増幅回路で、
入力電圧(交流)を大きくしていくと、
出力電圧の波形が大きくなり、やがて波形の上側、下側歪みますが、
この歪みについて質問です。
片方の歪みは、電流がトランジスタを通る際に、
逆方向電流が通らないことから生じると思うのですが、
なぜ両側に歪みが生じるのでしょうか?
また、この歪みの上限は、
入力電圧を大きくしていくと下がりますが、
上限が下がるのはなにを意味するのでしょうか?

Aベストアンサー

エミッター接地の増幅器は、基本的に直流増幅器ですね。
ベース入力側から検討します。交流の入力を入れると言ってもグランドよりもマイナスの電圧は入れられませんから、交流信号の中性点をグランドレベルよりプラス側にバイアスしていますね。この中性点を中心に交流入力を大きくしていくと、あるレベルで交流の負側がグランドレベルになりますね。これ以上のマイナスはありませんから、これが入力側の限界でこれ以上は、歪みます。
次に出力側も交流の電源があるわけでなく、直流の一定電圧電源があって、この電圧から、交流を出す為に出力に出したくない電圧をトランジスタのコレクタ・エミッタ間に負担させているわけです。
直流電源電圧を2本の水平な平行線で示し、その2線の間に交流の出力波形を書いてみて、その波形の上側を斜線で塗りつぶしてみてください。
その斜線部分が電源電圧がトランジスタに食われる部分です。
イメージできませんでしょうか。
従って直流電源は、交流の最大振幅(+側-側の合計)以上の電圧が必要です。
ちょっと自己満足の説明ですが、どうでしょうか。

Q電圧増幅度の出し方

入力電圧と出力電圧があってそこからどうやって電圧増幅度を求めるんですか?
電圧増幅度を出す式を教えてください

Aベストアンサー

増幅回路内の各段のゲイン、カットオフを求めて、トータルゲイン及びF特、位相
を計算するという難しい増幅回路の設計にはあたりませんので、きわめて単純に
考えればいいですよ。

電圧利得(A)=出力電圧/入力電圧

となります。

これをデシベル(dB)で表すと

G=20LogA(常用対数)

で計算できます。

ご参考に。

Qエミッタ接地における出力信号の反転について

あけましておめでとうございます。
新年そうそう申し訳ございませんがよろしくお願いいたします。
(1)エミッタ接地回路における入力信号と出力信号の関係についてですが、ベースバイアスを加えた場合には、出力信号は入力信号に対し反転しているのですが、ベースバイアスなしの場合ではも同様に反転するのでしょうか。あくまで、出力信号が反転するのはベースバイアスを加えたときだけなのでしょうか。

(2)この出力信号の反転について、なぜ反転して現れるのでしょうか。理論にこだわりすぎで、このようなものはよく結果として得られるものもあるかと思いますが、どの回路で・・・というか、どのような仕組み、原理から反転しているのでしょうか。

(3)この反転は出力信号で現れますが、コレクト電圧(コレクト-エミッタ間電圧)において、入力信号に対して反転して現れているのでしょうか。

細かい事項で申し訳ございませんがヨロシクお願いいたします。

Aベストアンサー

 エミッタ接地トランジスタ回路における出力信号(電圧)は、入力信号(電圧)に対して反転します(位相が逆になります)。ベースにバイアスを与えるかどうかには関係しません。

 入力信号(電圧)によってベースに電流が流れ込むと、それがコントロール作用をして、コレクタに増幅された電流が流れることが可能になります。電圧増幅するためにはコレクタに一端を電源に接続した負荷抵抗をつけるわけですが、コレクタを通じて負荷抵抗に増幅された電流が流れると、コレクタの電圧は接地側に近づくので、コレクタから取り出す出力信号(電圧)は原理的に入力信号(電圧)に対して反転します。

 エミッタに抵抗をつけ、この抵抗を介してエミッタを接地すると、エミッタの出力信号(電圧)は、入力信号(電圧)と同相になります(反転しません)。

 コレクタとエミッタの両方に抵抗をつけると、コレクタ出力電圧は反転し、エミッタ出力電圧は反転しません。

Q計算値と理論値の誤差について

交流回路の実験をする前に、ある回路のインピーダンスZ(理論値)を計算で求めたあと、実験をしたあとの測定値を利用して、同じ所のインピーダンスZ(計算値)を求めると理論値と計算値の間で誤差が生じました。
そこでふと思ったのですが、なぜ理論値と計算値の間で誤差が生じるのでしょうか?また、その誤差を無くすことはできるのでしょうか? できるのなら、その方法を教えてください。
あと、その誤差が原因で何か困る事はあるのでしょうか?
教えてください。

Aベストアンサー

LCRのカタログ値に内部損失や許容誤差がありますが、この誤差は
1.Rの抵抗値は±5%、±10%、±20% があり、高精度は±1%、±2%もあります。
2.Cの容量誤差は±20% 、+50%・ー20% などがあり
3.Lもインダクタンス誤差は±20%で、
3.C・Rは理想的なC・Rでは無く、CにL分、Lに抵抗分の損失に繋がる成分があります。
これらの損失に繋がる成分は、試験周波数が高くなると、周波数依存で増大します。
また、周囲温度やLCRの素子自身で発生する自己発熱で特性が変化します。
測定器や測定系にも誤差が発生する要因もあります。
理論値に対する測定値が±5%程度発生するのは常で、実際に問題にならないように、
LCRの配分を工夫すると誤差やバラツキを少なく出来ます。
 

Q周波数特性の利得の低下について

トランジスタの周波数特性についてお尋ねしたいことがあります。

周波数特性は台形のような形をしているのですが、低域周波数帯と高域周波数帯で利得が低下する原因が分かりません。
初心者でも分かるように簡単に説明してくれませんか?。よろしくお願いします。

Aベストアンサー

トランジスタの増幅回路で入力や出力の結合部分にコンデンサを使うことが一般的ですがこれが原因で増幅度が小さくなる事は有ります。

つまり
信号源→コンデンサ→増幅回路入り口
と言う場合コンデンサのリアクタンスは1/ωCで計算されますがここでω=2Πfですから周波数fが下がればリアクタンスが大きくなって結合が弱まりますね。また補正のためにエミッタアース間にもコンデンサを入れる事が多いですがこれは周波数が低くなると負帰還が多くなり増幅度は下がります。

逆に周波数が非常に高くなるとベース、エミッタ、コレクタ、各電極の配線などの浮遊容量などによって増幅度を下げる方向に作用します。
殊更高くなると半導体内部の電荷の移動時間すら問題になります。

Q金属、半導体の抵抗の温度変化について

金属は温度が高くなると抵抗が大きくなり、半導体は温度が高くなると抵抗が小さくなるということで、理論的にどうしてそうなるのでしょうか。
金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?
半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。
あと自分で調べていたところ「バンド理論」というのを目にしました。
関係があるようでしたらこれも教えて頂くとありがたいです。

Aベストアンサー

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体の中において金属の自由電子に相当するものは、電子とホールです。この2つは電流を担う粒子ですので、「キャリア」(運ぶ人)と言います。
ホールは、半導体物理学においてプラスの電子のように扱われますが、その実体は、電子が欠けた場所のことを表す「穴」のことであって、おとぎ話の登場人物です。
電子の濃度とホールの濃度に違いがあったとしても、一定の温度においては、両者の濃度の積は一定です。
これは、水溶液において、H+ と OH- の濃度の積が一定(10^(-14)mol^2/L^2)であるのと実は同じことなのです。

中性の水溶液の温度が高くなると、H2O が H+ と OH- とに解離しやすくなり、H2O に戻る反応が劣勢になります。
それと同様に、真性半導体においても、温度が上がると電子とホールが発生しやすくなるのに比べて、両者が出合って対消滅する反応が劣勢になるため、両者の濃度の積は増えます。
キャリアが増えるので、電流は流れやすくなります。

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体...続きを読む

Qエクセルで片対数グラフを作る

エクセルで片対数グラフを作る方法を詳しく教えてください。お願いします。

Aベストアンサー

グラフの数値軸のところで右クリックして
軸の書式設定(O)→目盛(タブ名)

対数目盛を表示する(L)
にチェックを入れてください。

Q遮断周波数のゲインがなぜ-3dBとなるのか?

私が知っている遮断周波数の知識は・・・
遮断周波数とはシステム応答の限界であり、それを超えると減衰する。
<遮断周波数の定義>
出力電力が入力電力の1/2となる周波数を指す。
電力は電圧の2乗に比例するので
Vout / Vin = 1 / √2
となるので
ゲインG=20log( 1 / √2 )=-3dB
となる。

ここで、なぜ出力電力が入力電力の1/2(Vout / Vin = 1 / √2)
となるのでしょうか?
定義として見るにしてもなぜこう定義するのか
ご存じの方いらっしゃいましたら教えて下さい。

Aベストアンサー

>ここで、なぜ出力電力が入力電力の1/2(Vout / Vin = 1 / √2)
>となるのでしょうか?
>定義として見るにしてもなぜこう定義するのか

端的に言えば、
"通過するエネルギー"<"遮断されるエネルギー"
"通過するエネルギー">"遮断されるエネルギー"
が、変わる境目だからです。

>遮断周波数とはシステム応答の限界であり、それを超えると減衰する。
これは、少々誤解を招く表現です。
減衰自体は"遮断周波数"に至る前から始まります。(-3dBに至る前に、-2dBとか、-1dBになる周波数があります)

Qトランジスタのエミッタ抵抗

こんばんは。
電気回路を勉強している初心者です。
トランジスタのエミッタ抵抗について教えてください。

エミッタ接地回路でエミッタ側に抵抗を入れると、温度特性などでトランジスタの増幅率が変わっても、実際に出力される増幅が一定に安定すると本に書いてあるのですが、理由がよくわかりません。

ネットやこのサイトでも調べてみましたがわかりません。
よろしければ教えてください。よろしくお願いします。

Aベストアンサー

定性的な説明は isoworld さんと outerlimit さんの通りです。
もし定量的な説明が必要であれば以下を参考にしてください。

例えば以下のようなエミッタ接地の増幅回路を考えます。

          ┌──-┬─ Vcc(電源電圧)
          │    Rc
          R1   ├─ Cout ─ Vout
          │    C
 Vin ─ Cin ─┼─ B
          │    E
         R2   │
         │   Re
   ────┴──┴───── GND

Vin が入力信号で、Vout が出力信号です。交流の入力信号に対して、カップリングコンデンサの Cin と Cout のインピーダンスはゼロと仮定します(これを考慮すると式が複雑になるため)。すると、交流の等価回路は次のようになります。

       ib →       ← β*ib
   Vin ─┬──┐  ┌──────┬─ Vout
       │    r  ↓ β*ib       │
     R1//R2  └─┤← Ve     Rc↑β*ib
       │      Re↓(1+β)*ib   │
     ─┴────┴──────┴─

r はトランジスタの入力抵抗、βはトランジスタの電流増幅率、ib はベース電流、Ve はエミッタ電圧です。
R1//R2 は R1 と R2 の並列合成抵抗で R1//R2 = R1*R2/( R1 + R2 ) です。電源ライン Vcc は一定電圧なので、交流的にはGNDと同じとみなせます。したがって入力端子から交流的に見ると R1 と R2 が並列接続されているように見えます(実は、信号源の出力抵抗が充分小さければ、この部分は全体の増幅率に影響しません)。

エミッタには、直流電圧に交流電圧(信号)が重畳した脈流的な電圧が出ていますが、この図で Ve というのは、その交流(信号)成分を意味しています。Vin もベース電圧の交流成分、Vout もコレクタ電圧の交流成分という意味です。電流も同様で、ベース電流やコレクタ電流は直流に交流が重畳した脈流ですが、図で示したのは交流成分の意味です。電流の向きは、ベース電流 ib が図の向きに増える方向に動いたときに、コレクタ電流 β*ib が図の向きに増えるということを表わしています。β*ib が増えると、コレクタ抵抗 Rc による電圧降下で、Vout は小さくなる方向(負の電圧の方向)に動くことになります。ib が増えるのは Vin が大きくなる方向(正の電圧方向)に動いているときなので、Vin と Vout の位相は互いに逆になります。

コレクタ電流は、ベース電流をβ倍したもので、エミッタ電流はベース電流とコレクタ電流の和なので、ベース、エミッタ、コレクタに流れる電流について以下の関係式が得られます。
   ベース電流  ib = ( Vin - Ve )/r --- (1)
   エミッタ電流  ( 1 + β )*ib = Ve/Re --- (2)
   コレクタ電流  β*ib = -Vout/Rc --- (3)
式(1)を式(2)に代入して ib を消せば
   ( 1 + β )*( Vin - Ve )/r = Ve/Re
これを Ve について解くと
   Ve = ( 1 + β )*Vin/( r/Re + 1 + β ) --- (4)
一方、式(1)を式(3)に代入して ib を消せば
   β*( Vin - Ve )/r = -Vout/Rc --- (5)
式(4)を式(5)に代入して Ve を消せば
   β*{ Vin - ( 1 + β )*Vin/( r/Re + 1 + β ) }/r = -Vout/Rc
  → Vout/Vin = -( β*Rc )/{ 1 + ( 1 + β )*Re } --- (6)
となります。上式の右辺の分母・分子をβで割ると
   Vout/Vin = -Rc/{ Re + ( r + Re )/β} --- (6')
となります。- がついているのは、Vin と Vout が逆相になっていることを表わしています。

トランジスタの電流増幅率 β が非常に大きいとき、式(6')の ( r + Re )/β はゼロとみなせるので
   Vout/Vin = -Rc/Re
となって、信号増幅率( Vout/Vin )はコレクタ抵抗とエミッタ抵抗の比だけで決まります(この近似式は増幅器の設計によく用いられます)。

しかしβ が非常に大きいとはみなせないとき(普通のトランジスタのβは数十~数百程度)、βの大きさによって Vout/Vin が変わります。Vout/Vinが β の変動に対してどれくらい安定しているかというのは 、式(6)をβで偏微分した「信号増幅率の変化率」で評価します。
  信号増幅率の変化率 = ∂( Vout/Vin )/∂β
                = - Rc*( r + Re )/{ r + ( 1 + β )*Re }^2 --- (7)
β が非常に大きいとき、信号増幅率はゼロに漸近しますから、βの変動に対して信号増幅率は変化しない、つまり増幅率は安定ということになります(βそのものが大きいのでβが多少変わっても影響が少ないのは当然といえば当然ですが)。

βが有限の場合、Re がもしゼロ(エミッタ抵抗がない)ならば
  信号増幅率の変化率 =- Rc/r --- (8)
となって、Rc が大きく、r が小さいほどβの変動に弱い回路になります( r は通常、数kΩで、ベース電流が大きいほど小さくなる)。式(7) を書き直すと
 信号増幅率の変化率 = ( Rc/r )*( 1 + Re/r )/{ 1 + ( 1 + β )*( Re/r ) }^2
となります。この式は分子に Re/r、分母に ( Re/r )^2 の項があるので、Re/r が大きいほど信号増幅率の変化が小さいことを表わしています(Re/r = 0 のとき式(8)になります)。

式ばかりいじっていてもピンと来ないので、数値例を紹介します。Rc = 10kΩ、β = 100、r = 5kΩ の回路で、何らかの原因でβが 50 に下がったり、200にまで大きくなったとします。すると、式(6)または式(6')を使って計算すると分かりますが、回路全体の増幅率、増幅率の変化は以下のようになります。

 ・Re = 0 の場合   増幅率 = -100(β=50)、-200(β=100)、-400(β=200)、増幅率の変化 = -50%~+100%
 ・Re = 100Ωの場合 増幅率 = -49.5(β=50)、-66.2(β=100)、-79.7(β=200)、増幅率の変化 = -25%~+20%
 ・Re = 1kΩの場合  増幅率 = -8.93(β=50)、-9.43(β=100)、-9.71(β=200)、増幅率の変化 = -5.4%~+2.9%

Re が大きいほど増幅率そのものは低下しますが、安定度が良くなることが分かると思います。なお、エミッタ抵抗に並列にコンデンサを入れた回路は、交流的にはRe が小さい回路になるので、信号増幅率は大きくできますが安定性は良くありません(直流的な動作点は安定します)。

定性的な説明は isoworld さんと outerlimit さんの通りです。
もし定量的な説明が必要であれば以下を参考にしてください。

例えば以下のようなエミッタ接地の増幅回路を考えます。

          ┌──-┬─ Vcc(電源電圧)
          │    Rc
          R1   ├─ Cout ─ Vout
          │    C
 Vin ─ Cin ─┼─ B
          │    E
         R2   │
         │   Re
   ────┴──┴───── GND

Vin が入力信号で、Vo...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング