
A 回答 (7件)
- 最新から表示
- 回答順に表示
No.7
- 回答日時:
3回振ったサイコロの3回の目の中で最大が4になるという問題だとすると、
最大が4になるということを言い換えると、
最大値が4以下(全ての目が4以下)であり、かつ最大値が3以下ではない(全ての目が3以下ではない)ということです。
ということで求める確率は
(全ての目が4以下になる確率)ー(全ての目が3以下になる確率)となります。
全ての目が4以下になる確率は、(4/6)^3=64/216
全ての目が3以下になる確率は、(3/6)^3=27/216
したがって、最大値が4になる確率は64/216ー27/216=37/216となります。
もちろん一発の計算でということであれば、
(4/6)^3ー(3/6)^3=37/216
です。
ただし、この考え方を瞬時に思いつくのは知らなければ難しいかもしれません。
そうであれば、#6さんのように地道に漏れや重複がないように計算するのが一番早いかもしれません。
No.6
- 回答日時:
問題文の日本語をしっかりと読解しないといけないけど、おそらく
(1) 3回のうち、最低1回は「4」が出る。
(2) 残りの2回は「4以下」であればよい。
ということなのでしょう。
どういう「目の出方」の組み合わせならそうなるかといえば
(a1) 1回目に「4」、2回目・3回目は「4以下」
(a2) 2回目に「4」、1回目・3回目は「4以下」
(a3) 3回目に「4」、1回目・2回目は「4以下」
この「目の出方」は
3C1 × 1 × 4 × 4 = 48 とおり
でもよさそうですが、これだと「3回とも『4』の目」や「2回『4の目』が出る」ケースをダブってカウントすることになります。
ダブるのは
・3回とも『4』の目:(a1)~(a3) の各ケースで1とおりずつ→計3とおり
・2回『4』の目(残りの1回は「1~3」のいずれか):(a1)~(a3) の各ケースで6とおりずつ→計18とおり
なのでこれを差し引き、あらためて
・3回とも『4』の目:全体で1とおり
・2回『4』の目(残りの1回は「1~3」のいずれか):全体で 3 × 3 = 9 とおり
を加えて
48 - 21 + 1 + 9 = 37 とおり
そんな面倒なことをするぐらいなら、最初から
(b1) 1回目に「4」、2回目・3回目は「3以下」
(b2) 2回目に「4」、1回目・3回目は「3以下」
(b3) 3回目に「4」、1回目・2回目は「3以下」
この「目の出方」は
3C1 × 1 × 3 × 3 = 27 とおり
を計算して、これに
・3回とも『4』の目:全体で1とおり
・2回『4』の目(残りの1回は「1~3」のいずれか):全体で 3 × 3 = 9 とおり
を加えて
27 + 1 + 9 = 37 とおり
とするのがよさそうです。
いずれも「一発の計算」では無理なので、論理的にひとつひとつ、「全部を網羅したか(抜けはないか)、ダブりはないか」と確認しながら進めるのがまっとうなやり方です。
数学って、そういう「試行錯誤しながら、解き方を探していく」ものなのです。論理的、客観的に、ドンくさく。
No.5
- 回答日時:
>出る目の最大値が4である確率
max(1回目の目、2回目の目、3回目の目) = 4
と解釈するのが妥当だと思うよ。
>「出る目が4以下である確率」
は
1回目の目 ≦ 4 かつ 2回目の目 ≦ 4 かつ 3回目の目 ≦ 4)
= max(1回目の目、2回目の目、3回目の目) ≦ 4
でだいぶ意味が違う。
No.3
- 回答日時:
一発で計算というのは無いかな。
やり方(1)
①全て4以下 4^3=64通り
②全て3以下 3^3=27通り
①のうち4を1回以上含むのは ①―②=37通り。
全部で6^3=216通りだから
37/216
やり方(2)
①全て4 1通り。
②4が2回、他は3以下
3C2×3=9通り
③4が1回、他は3以下
3C1×3^2=27通り
①十②十③=37通り。
全部で6^3=216通りだから
37/216
No.1
- 回答日時:
> 出る目の最大値が4である確率について、
この意味は?
出る目が4である、との違いは?
出る目の最大値が4である、と言うサイコロは無いので。
条件が明確でないと、誰も解答はできません。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 統計学 サイコロを投げて6が連続して100回出ました。このサイコロは細工がされていますか? 16 2024/06/05 17:55
- 数学 BINGが間違えた、とっても簡単な算数の問題です、これを見て、どう思われますか。 2 2024/04/25 15:55
- 高校 数学の質問です! 3つのサイコロを同時に投げたときに、奇数の目が2つ以上出る確率を知りたいです この 9 2024/06/07 00:29
- 数学 大至急 数学の問題です 5 2023/06/29 22:28
- 数学 数学A確率の問題がどうしてもわからないです。 一個のサイコロを投げたとき、3の倍数の目が出る確率は 5 2023/02/23 17:25
- 数学 至急!!大学2年の女子です。この高校レベルの問題が分からないので教えてください!お願いしますm(_ 2 2022/11/11 22:10
- 統計学 統計学の問題です。よろしくお願いします。 あるサイコロを3回投げると,1の目が2回出た。 1の目が出 8 2023/01/19 03:37
- 統計学 統計学の問題です。よろしくお願いします。 あるサイコロを3回投げると,1の目が2回出た。 1の目が出 4 2023/01/19 15:21
- 数学 1つのサイコロを4回振って出た目のうち最大なものが4になる確率を求めよ のような問題の時に 1回 10 2024/04/30 22:40
- 数学 確率 サイコロを3回投げて 出た目の数の積が6で割り切れる確率 2と3の倍数の「2,3,4,6」の可 3 2023/04/28 17:47
このQ&Aを見た人はこんなQ&Aも見ています
-
こうなる理由が分かりません
数学
-
確率の問題
数学
-
4で割った余りが3でないときは図のように書いてもいいんですか?できればその根拠となるサイトを載せてい
数学
-
-
4
数学 算数の通分について 分数を約分するときって 例えば分母が 8と6だったら8×6をして48 だか
数学
-
5
これなぜせんぶんAB上だったり円弧上のようにわかるのでしょうか。どう考えているのか教えてほしいです。
数学
-
6
1の100乗、2の100乗、~100の100乗をそれぞれ12で割った余りのうちことなるものは何通りか
数学
-
7
簡単なはずですが教えてください。
数学
-
8
ちょっとむずかしいね?
数学
-
9
算数問題で、1/2+1/6=の計算で、分母を揃えて計算するという基本を守って計算して……
数学
-
10
数学の三角形に関する問題です。
数学
-
11
2の810乗はいくつですか?
数学
-
12
なぜ分子が1になるんですかこれ?あと、なぜ答えが0なんですか? 数学数学
数学
-
13
算数や数学の問題って、問題自体が間違えていることもあるので、出題者の意図を汲み取ってどのような解答を
数学
-
14
図形について
数学
-
15
円1:x²+y²=4と円2:(x-2)²+y²=1の交点を求めようと思って円1の方程式を変形してy²
数学
-
16
|x+2|>0 計算方法
数学
-
17
数学の約束記号の問題について教えてください。
数学
-
18
高校数学です。 sin70-sin50+cos100 これってどうやって解きますか?考え方のポイント
数学
-
19
この数学の問題解き方あってるか見てほしいです
数学
-
20
高校数学についてです。 問題は何でも良いのですが、ある問いでグラフを書くものがあったとして、それに漸
数学
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
二重和
-
これって①番の公式を使うのでし...
-
全体100人のうちリンゴ派90人み...
-
確率の質問です
-
グラフの作成に便利な、
-
モンティホール問題について 問...
-
複素数に拡張したタンジェント...
-
純実(purely real)とはどんな状...
-
フラッシュ暗算ってそろばん経...
-
媒介変数 x = t + 1/t-1 , y = ...
-
mx-y-m-1=0,x+my-2m-3=0の交点P...
-
画像の問題の(2)で質問です。 ①...
-
ヒット&ブローゲーム(数あて...
-
f(z)=(z^2-1)のテイラー展開と...
-
九星気学では、人の生まれた年...
-
高1数学二次関数の問題です!
-
8進数の重みについて 1→8→64は...
-
4500と3000を1:9と3:7とか比...
-
この増減表を求める問題で微分...
-
独立かどうかの判断のしかた
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
f(z)=(z^2-1)のテイラー展開と...
-
中高で数学をやる意義は? と聞...
-
二重和
-
誤差の大きさ
-
確率の質問です
-
123を使って出来る最大の数は?
-
【数学の問題】男女4vs4の合コ...
-
媒介変数 x = t + 1/t-1 , y = ...
-
2025.2.17 02:11にした質問の延...
-
演算子法についての式変形について
-
三つの複素数の位置関係
-
クレメールの公式について教え...
-
2.2%は分数で表すと22/1000、約...
-
皆既日食について
-
高1数学二次関数の問題です!
-
一番なんですけど、 等比数列だ...
-
数学と言うか数字の面白さ
-
絶対値の中が0以上ならそのまま...
-
これなに
-
数学
おすすめ情報