
exp[x^2]を定義に従って微分するにはどうしたらいいですか。
高校数学でも可能ですか。
自分の考え
hは十分小さい。
exp[(x+h)^2]-exp[x^2]
=exp[(x^2+2xh+h^2]-exp[x^2]
exp[x^2]でくくって
exp[x^2]{ exp[2xh+h^2]-1}
ここで、tは十分小さいものとして、
exp[t]~1+t→exp[t]-1~tより
t=2xh+h^2を代入して (∵hも小さい)
exp[x^2](2xh+h^2)
微分の定義より
exp[x^2](2xh+h^2)/h
=exp[x^2](2x+h)
h→0
2x exp[x^2 ]となる。
数学Ⅲの微積習いたての高校生でもできるくらいもっと簡単にできませんか。
理工系の大学生のため数学科がやるよな厳密な数学だと回答が読めません。すみません。
No.8
- 回答日時:
←No.6
ちな、No.4 は「微分係数」の定義に沿ったつもり。
冪級数展開の係数だから「微分係数」って呼ぶ とすれば、
n 次微分係数は、テイラー展開の n 次項に n! を掛けたもの
として定義される。
この定義は、高次微分係数について明快だと思う。
No.7
- 回答日時:
定義に従ってというのは
導関数の定義に戻ってという
意味だろうか?
それも面白いけど、汎用性がないので
合成関数の導関数の公式の証明を行ったうえで
それを使う方がよいと思う。
https://hiraocafe.com/note/differential_of_compo …
工学系なら簡単な証明の方で十分
No.6
- 回答日時:
細かい話で恐縮ですが理工系の大学生との事なので少し。
大学の微積分には高校では習わなかった「微分」と言う概念が出て来ます。もちろんこれは「導関数を求める」と言う意味ではなく多変数関数で言う全微分に当たるものです。なので質問文の「微分の定義より」とある所は本来は「導関数の定義より」と書くべきだったと思います。
No.5
- 回答日時:
数学科の学生もれっきとした「理工系の大学生」ですが。
それに現役の理工系の大学生であれば「導関数等の実際の計算は高校数学と全く同じ」と言う事はお分かりのはずだと思います。大学で習うイプシロン・デルタ論法は極限値の定義ないし基礎付けに必要と言うだけであって、実際の計算にはほぼ使いません。回答ありがとうございます。
あーー、自分の通っているキャンパスで考えてました。数学科とある学科(ちょっと特殊な名前の学科で、学校バレするので言いません。)だけ別のキャンパスにあって、数学科のことは頭になかったです。
No.4
- 回答日時:
exp の定義 exp(z) = Σ[k=0→∞] (1/k!)z^k に
z = (x+h)^2 を代入すると、
exp((x+h)^2) = Σ[k=0→∞] (1/k!)(x+h)^(2k)
= Σ[k=0→∞] (1/k!) Σ[j=0→2k] ((2k)Cj)(x^(2k-j))h^j
= { Σ[k=0→∞] (1/k!) 1 x^(2^k) } ← j=0 の項
+ { Σ[k=1→∞] (1/k!) (2k) (x^(2k-1))h } ← j=1 の項
+ { Σ[k=1→∞] (1/k!) Σ[j=2→2k] ((2k)Cj)(x^(2k-j))h^j }
= { Σ[k=0→∞] (1/k!) (x^2)^k) }
+ 2x { Σ[k=1→∞] (1/(k-1)!) (x^2)^(k-1)) } h
+ { Σ[k=1→∞] (1/k!) Σ[j=2→2k] ((2k)Cj)(x^(2k-j))h^(j-1) } h^2
= exp(x^2)
+ 2x exp(x^2) h
+ O(h^2).
テイラーの定理を用いた微分係数の定義により、
(d/dx) exp(x^2) = 2x exp(x^2) になります。
回答ありがとうございます。
exp[x]の定義から導くのですね。初めてみました。合成関数の微分法を示したほうが早いかもしれませんね。
ありがとうございます。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 物理学 ガウス積分の計算がうまくいきません。助けてください。 量子力学で∫[-∞→∞]exp[-ax^2+i 2 2024/07/24 21:58
- 物理学 電磁気学の問題について教えて欲しいです. 1 2023/05/05 17:01
- 物理学 数学、物理に強い方に質問です。 (d/dx -x)^(n-1) exp[x^2/2] d/dx (e 1 2024/12/04 18:43
- 物理学 数学、物理に強い方に質問です。 (d/dx -x)^(n-1) exp[x^/2] d/dx (ex 2 2024/12/03 01:45
- 数学 f(x)=exp(-(2x-a)^2)のフーリエ変換の求めろという問題分かりません。教えて欲しいです 2 2022/12/18 18:15
- 数学 積分 大学数学・物理 1 2023/01/30 19:43
- 数学 公共建築工事 共通仮設費率 エクセル 3 2023/09/11 13:46
- 数学 積分(大学数学) 1 2023/01/23 16:43
- 数学 paythonを使用した周回積分に関する質問です。 2 2023/02/17 19:09
- 数学 数学の質問です。 関数f(t)のフーリエ変換をF(ω)=∫[-∞→∞]f(t)exp(-iωt)dt 1 2023/07/29 01:08
このQ&Aを見た人はこんなQ&Aも見ています
-
f(x)=f(x²)はどんなグラフになりますか?
数学
-
中3数学因数分解について
数学
-
高校数学において(dx/dt)×dt=dx は形式的に約分のように扱ってよいと言われていますが、高校
数学
-
-
4
中高で数学をやる意義は? と聞かれたらみなさんなんて答えます?
数学
-
5
√1って|1|もしくは±1ですよね?
数学
-
6
問2なのですが、黄色い線から青い線になる計算がどうやってやったのか分かりません(´;ω;`)解説お願
数学
-
7
123を使って出来る最大の数は?
数学
-
8
仮定より、∠BED=∠CFD=90° したがって、円周角の逆の定理より、4点B,C,F,Eは同一円周
数学
-
9
絶対値の中が0以上ならそのまま外すと教えられたのですが、この解答では0は-をつけて外しています。なぜ
数学
-
10
この回答あってる
数学
-
11
0≦x≦1において 赤く囲んだ不等式を証明する問題ですが、この解き方は合ってますか?
数学
-
12
円1:x²+y²=4と円2:(x-2)²+y²=1の交点を求めようと思って円1の方程式を変形してy²
数学
-
13
簡単なはずですが教えてください。
数学
-
14
円周率の他に平行率ってありますか? まっ平ら率かな
数学
-
15
余弦定理
数学
-
16
少数を分数に直す時に素早くできる方法ありませんか? 例えば4.2を21/5のように素早く計算したいで
数学
-
17
高校の微分の問題で、g(x)=x^3-3bx+3b^2のグラフはなぜ画像のようになるのですか? h(
数学
-
18
t=14+7s/2 s = -4a-4/3a+2 のときtを求めよ この計算問題で答えが t = 7
数学
-
19
5.0×10の二乗=C×10 計算の仕方教えてくださいお願いします
数学
-
20
なぜこのように極座標に変換できるのか教えてください 変換の手順が知りたいです
数学
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
モンティホール問題について 問...
-
二重和
-
上の(−b−2)の何をどう考えた...
-
確率の質問です
-
全体100人のうちリンゴ派90人み...
-
これって①番の公式を使うのでし...
-
複素数に拡張したタンジェント...
-
純実(purely real)とはどんな状...
-
グラフの作成に便利な、
-
ヒット&ブローゲーム(数あて...
-
2.2%は分数で表すと22/1000、約...
-
フラッシュ暗算ってそろばん経...
-
mx-y-m-1=0,x+my-2m-3=0の交点P...
-
独立かどうかの判断のしかた
-
画像の問題の(2)で質問です。 ①...
-
4500と3000を1:9と3:7とか比...
-
媒介変数 x = t + 1/t-1 , y = ...
-
足し算のざっくり計算が苦手で...
-
九星気学では、人の生まれた年...
-
この増減表を求める問題で微分...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
f(z)=(z^2-1)のテイラー展開と...
-
中高で数学をやる意義は? と聞...
-
二重和
-
誤差の大きさ
-
確率の質問です
-
123を使って出来る最大の数は?
-
【数学の問題】男女4vs4の合コ...
-
媒介変数 x = t + 1/t-1 , y = ...
-
2025.2.17 02:11にした質問の延...
-
演算子法についての式変形について
-
三つの複素数の位置関係
-
クレメールの公式について教え...
-
2.2%は分数で表すと22/1000、約...
-
皆既日食について
-
高1数学二次関数の問題です!
-
一番なんですけど、 等比数列だ...
-
数学と言うか数字の面白さ
-
絶対値の中が0以上ならそのまま...
-
これなに
-
数学
おすすめ情報