新規無料会員登録で1000名様に電子コミック1000円分が当たる!!

電磁気の問題です。

内半径A、外半径Bの絶縁された導体球殻があり、球殻内は誘電率ε、球殻外は真空。中心からC(C<A)のところに点電荷qをおいてあるときの、球殻内部の任意の点P1および外部の任意の点P2における、電位を求めよという問題です。

球殻内部の電位は、鏡像法により、中心と点電荷を結ぶ直線状に、中心からA^2/Cの点に電荷Q'=-Aq/Cをおき、中心にQ"=Aq/Cをおくことにより求められると思うんですが、外部の電位をどのように求めたらいいのかわかりません。球殻外部表面に誘導される誘導電荷は一様に分布していないので、外部ではガウスの法則により簡単に求められなくて困っています。鏡像法でも境界条件の立て方がよくわかりません。

外部電位の求め方と内部電位の求め方もあっているかどうか教えてください。

大学高専編入試験の電気の専門の問題です。どうか早急にやり方を教えてください。

このQ&Aに関連する最新のQ&A

A 回答 (3件)

球殻の外と中で場合わけする必要があるかと思います。



1.球殻の外
外の空間の電荷は0、球殻外面が等電位から、仮想的な電荷を中心に置いて外部の電位を計算。
(ついでに、導体の球殻の電位V0を計算)

2.球殻内部では、影像法で仮想電荷をおいて計算。
ただし、この場合に仮想電荷とCの位置の電荷から電位を計算すると、球殻の電位が0になる(かな?)ので、1.で求めた球殻の電位V0と整合させるために全体の電位にV0の下駄を履かせる必要がありますが。
(また、2.では仮想電荷は球殻内部(計算対象の領域内)にはおけないかと。)
    • good
    • 0

ジャクソン電磁気学に類題がありますので、見てください。


第二版日本語版なら、上 p67, 71 です。

No.1 の方も書かれていますが、鏡像電荷に置き換えたら球殻を考える
必要はありません。点電荷の作る電位を重ね合わせるだけです。

また、電荷の配置が正しいかどうかは、球殻上で電位が一定になっているか
どうかを確認すればよいです。
    • good
    • 0

鏡像電荷を置く位置は、正しいと思います。


そこに配置するべき電荷量をちゃんと解けば、
内外の電位分布は問題なく求まるはずです。
鏡像法において、誘導電荷を積分する必要は、
通常ありません。誘導電荷を、鏡像電荷で
置き換える方法ですから。

この回答への補足

もう少し詳しい値等を教えてもらえませんか?

補足日時:2007/08/15 17:36
    • good
    • 1

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q同心球導体球の接地について

同心球導体球の接地について、過去に質問されていなかったのでおねがいします。
同心球導体球において、外側の球に電荷Qを与え、内側の球を接地した場合、電界はどのようになるのでしょうか?
(内側の球の半径a、外側の球の内径b、外径cです。)
回答は、
a<r<b、c<rの場合についてお願いします。

Aベストアンサー

(1)内球と外球の電荷
  外側の球の表面に電荷 Q を与えたとき、内側の球の表面に-Q'の電荷が誘起されるとします。
  すると、外側の球の裏面(内面)には Q' の電荷が誘起されます。このとき外側の球の表面の電荷を Q'' とすれば、外側の球の電荷の総量は Q なので、 Q' + Q'' = Q → Q'' = Q - Q'

(2)Q' を求める
  外球の外側にある半径 r ( c < r ) の球面を考えると、その球面に含まれる電荷は、内外の球の電荷の総和で、その値は
  -Q'(内側の球の表面電荷) + Q'(外側の球の裏面電荷) + Q - Q'(外側の球の表面電荷) = Q - Q'
  半径 r の球面上の電界を E1(r) とすれば、Gaussの定理より、4*π*r*E1(r) =( Q - Q')/ε → E1(r) = ( Q - Q' )/( 4*π*ε*r^2 ) ---[1]
  半径 r の球面上の電位を V1(r) とすれば、V1(r) = ∫[r~∞] E1(r) dr = ( Q - Q' )/( 4*π*ε*r )
  外側の球の表面電位は V1 = V1(c) = ( Q - Q' )/( 4*π*ε*c )

  内球と外球の間にある半径 r ( a<r<b ) の球面を考えると、その球面に含まれる電荷は、内側の球の表面電荷 -Q' だけだから、
  半径 r の球面上の電界を E2(r) とすれば、Gaussの定理より、4*π*r*E2(r) = - Q'/ε → E2(r) = -Q'/(4*π*ε*r^2) --- [2]
  半径 r の球面上の電位を V2(r) とすれば、V1 - V2(r) =∫[r~b] E2(r) dr = -Q'/(4*π*ε)*( 1/b - 1/r ) 。
  式[3]から、V1 =( Q-Q' )/( 4*π*ε*c ) なので、V2(r) = V1 + Q'/(4*π*ε)*( 1/b-1/r ) = ( Q-Q' )/( 4*π*ε*c ) + Q'/(4*π*ε)*( 1/b - 1/r )
  内側の球は接地されているので、V2(a) = 0  →  ( Q-Q' )/( 4*π*ε*c ) + Q'/(4*π*ε)*( 1/b - 1/a ) = 0
  したがって、Q' = Q/{ c* ( 1/a - 1/b + 1/c ) } = Q/{ 1 + c*( 1/a - 1/b ) } --- [3]

(3)電界分布
  式[3]を式[1],[2] に代入すれば
  E1(r) = ( Q-Q' )/( 4*π*ε*r^2 ) = Q*[ 1 - 1/{ 1 + c*( 1/a - 1/b ) } ]/( 4*π*ε*r^2 ) = Q*c*/[ { a*b/( a - b ) + c }*4*π*ε*r^2 ]
  E2(r) = -Q'/(4*π*ε*r^2) = -Q/[ { 1 + c*( 1/a - 1/b ) }*4*π*ε*r^2 ]

(4)まとめ
  a<r<b のとき、E = Q*c*/[ { a*b/( a - b ) + c }*4*π*ε*r^2 ]
  c<r  のとき、 E = -Q/[ { 1 + c*( 1/a - 1/b ) }*4*π*ε*r^2 ]

(1)内球と外球の電荷
  外側の球の表面に電荷 Q を与えたとき、内側の球の表面に-Q'の電荷が誘起されるとします。
  すると、外側の球の裏面(内面)には Q' の電荷が誘起されます。このとき外側の球の表面の電荷を Q'' とすれば、外側の球の電荷の総量は Q なので、 Q' + Q'' = Q → Q'' = Q - Q'

(2)Q' を求める
  外球の外側にある半径 r ( c < r ) の球面を考えると、その球面に含まれる電荷は、内外の球の電荷の総和で、その値は
  -Q'(内側の球の表面電荷) + Q'(外側の球の裏面電荷...続きを読む

Q導体球殻の電位

内半径a 外半径b の導体球殻の中心に電気量q(>0)の点電荷を置くとき
各点における電位の分布を求めよ。無限遠方をV=0とする。

という問題で

まず、ガウスの法則を用いて電場をもとめて、そこから距離の積分をしてVを求めようとしました。


まず、境界は次の三つであっていますでしょうか。

(1)0<r<aの時(2)a≦r<b(3)B≦r

そして各場合の電場は

(1)の時、∫ε_0EdS=q より
E= q/4πr^2ε_0
(2)の時、
導体の内部なので電場E=0
(3)の時∫ε_0Eds=q
E=q/4πr^2ε_0

ここで電位を求める場合の方法ですが境界の値と計算方法に自信がありません。

(3)の時、

V=-∫(∞→r)E・dr = (q/4πε_0)・(1/r)

(2)の時、
V=-∫(∞→b)E・dr -∫(b→r)0・dr = (q/4πε_0)・(1/b)

(1)の時、

V= -∫(∞→b)E・dr -∫(b→a)E・dr - ∫(a→r)E・dr = (q/4πε_0)(1/r)

(1)の答えが解答では(q/4πε_0)(1/r)
ではなく
(q/4πε_0)((1/b)+(1/r)-(1/a))
となっていました。

なぜなのでしょうか。

ご教授お願い申し上げます。

内半径a 外半径b の導体球殻の中心に電気量q(>0)の点電荷を置くとき
各点における電位の分布を求めよ。無限遠方をV=0とする。

という問題で

まず、ガウスの法則を用いて電場をもとめて、そこから距離の積分をしてVを求めようとしました。


まず、境界は次の三つであっていますでしょうか。

(1)0<r<aの時(2)a≦r<b(3)B≦r

そして各場合の電場は

(1)の時、∫ε_0EdS=q より
E= q/4πr^2ε_0
(2)の時、
導体の内部なので電場E=0
(3)の時∫ε_0Eds=q
E=q/4πr^2ε_0

ここで電位を求める場合の方法ですが境界の値と計算方...続きを読む

Aベストアンサー

考え方も計算も、ほぼオッケーですよ。
(1)のときの電位ですが
V= -∫(∞→b)E・dr -∫(b→a)E・dr - ∫(a→r)E・dr = (q/4πε_0)(1/r)

真ん中の(b→a)の積分のときは、上で書かれているように E=0 なので
積分も0です。
ですから
V=(q/4πε0)( (1/b) - (1/∞) + (1/r) - (1/a) )
になりますね。

Q電荷が球殻内に一様に分布する問題について

「 内半径a,外半径bの球殻(aくb)があり,球殻の中心からの距離rとする.電荷Qが球殻部分(aくrくb)に一様に分布しているとき,電界と電位を求めよ.また,rくa,bくrは真空として真空の誘電率をε0する.」
という問題です.
この問題は試験問題だったため回答がないので,一応参考書などを読んで似たような問題を見たりしたのですが,今一つ理解できません.
もしよろしかったら,どなたか教えていただけないでしょうか?
よろしくお願いします.

Aベストアンサー

hikamiuさんが既にお答えされていますので、以下は具体的な計算のやり方についての話です。計算のやり方は大学の先生のご好意による講義ノート(参考URL)が公開されていますので、そこの7の6を参照してみてください。もっともその前に講義ノートの6の5で少し計算の地ならしをしてから進まれたほうが理解が速いかもしれません。

参考URL:http://www-d.ige.solan.chubu.ac.jp/goto/docs/djk1/p0idxA.ssi

Q同心球殻状の導体から作られるコンデンサー 電場 電位差 電気容量

半径aと半径b(a<b)の同心球殻状の導体から作られるコンデンサーを考える。
外側球殻が電荷Qを帯び、内側球殻が電荷-Qを帯びているとし、以下の問いに答えよ。
(1)外側球殻と内側球殻にはさまれた領域の電場を求めよ。
(2)外側球殻と内側球殻の電位差Vを求めよ。
(3)このコンデンサーの電気容量を求めよ。

という問題が解けません。
特に、同心球殻状の導体から作られるコンデンサーの考え方がわかりません。
どなたか解いていただけませんか。
よろしくお願いします。

Aベストアンサー

基本的な考え方だけ説明します。
「球面上に一様に分布した電荷qは、球内に電場を作らず、球外では
動径方向を向く電場E(r)=q/(4πεr^2)をつくる」(ε:真空の誘電率)

内球に電荷q1が分布するとき、
0<r<aでE1(r)=0,a<rでE1(r)=(1/4πε)(q1/r^2)
外球に電荷q2が分布するとき、
0<r<bでE2(r)=0、b<rでE2(r)=(1/4πε)(q2/r^2)
実際の電場は、E(r)=E1(r)+E2(r)

電荷は、内球の外面にq1,外球の内面に-q1,外球の外面にq2分布する。

電位は、
φb=∫[0→∞] E(r)dr=(1/4πε)(q1+q2)/b
φa=φb+∫[a→b] E(r)dr=φb+(q1/4πε)(1/a-1/b)

q1=-Q,q2=+Qより、電位差は、
V=φa-φb=(Q/4πε)(1/a-1/b)だから、
C=Q/V=(Q/4πε)/(1/a-1/b)

Q導体で同心の外球、内球があり内球が接地されています。

http://oshiete1.goo.ne.jp/qa3031710.html

ここの問題の条件で、内外球の静電容量を求めよという問題があります。今やっている問題とほぼ一致した条件なので引用させてもらいました。

僕自身、接地するということがいまいちどういうことなのか理解できていない感じなのですが、
引用した質問の電界の答えから、内外球の電位差を求めてC=Q/Vという定義から静電容量を求めたところ、答えと一致しました。

そこで疑問がわいたのですが、C=Q/Vの定義が使えるのは外球と内球にそれぞれ-Q、+Qの電荷を与えているときと教科書に書いてありました。

この問題だと、外球にQの電荷を与えているだけで、内球には-Q'の電荷が誘起されています。
なぜC=Q/Vの定義から答えが算出できたのでしょうか?

電磁気学の理解に乏しいので詳しく教えていただきたいです。

Aベストアンサー

「与えた」に余りこだわりすぎると
「孤立した半径 a の導体球の容量を求めよ」というような問題
(たいていのテキストに出ている)の解釈がうまく行かなくなります.

わかりやすい平行平板コンデンサーでいいますと,
「2つの極板にそれぞれ +Q,-Q の電荷を与えた」というのは,
もともと電荷がなかった状態を出発点にして電荷を Q だけ一方の極板からもう一方の極板に
移したと考えればよいでしょう.
そうすれば,一方の極板には +Q の電荷が,もう一方の極板には -Q の電荷が,
それぞれ存在することになります.

上の孤立球の問題も,無限遠から孤立球に電荷 Q を移したと考えればよろしい.
そうすると,孤立球に +Q の電荷があるわけで,無限遠との電位差 Q/4πε_0 a から
Q = CV にしたがって C = 4πε_0 a と容量が求まります.

さて,今の問題で内球を接地したというのは内球と無限遠を導線でつないだ,
つまり内球と無限遠との電位差を同じにしたことを意味します.
で,上の解釈に従えば,内球と無限遠から外球(正確には外球殻)へ電荷 Q を移すことになります.
外球殻には内側表面に電荷に +Q' ,外側表面に +Q'' が分布します.
記号は引用された
http://oshiete1.goo.ne.jp/qa3031710.html
に従っています.
内球には -Q',無限遠には -Q'' があることになりますが,
Q' と Q'' の割合は2つの電位差,すなわち外球殻と内球の電位差,および外球殻と無限遠の電位差が
等しくなるように決まります.
内球と無限遠は導線で結ばれていますから電位は同じでないといけないのです.
もし,内球からのみ電荷を外球殻に移しても,
内球と無限遠は導線で結ばれていますから電荷は自由に行き来できるので,
上の条件に従うように勝手に電荷が移動します.
引用された inara さんのご回答はこうやって Q' と Q'' を決めています.

図で表すなら

          │
      ┌───┴───┐
      │       │
      │       │
外球殻内側─┴─     ─┴─外球殻外側
                    
   内球─┬─     ─┬─無限遠
      │       │
      │       │
      └───┬───┘
          │

と思えばよいでしょう.
実際,求めた容量は2つのコンデンサーの容量を合成したものになっていますので,
それもご確認下さい.

「与えた」に余りこだわりすぎると
「孤立した半径 a の導体球の容量を求めよ」というような問題
(たいていのテキストに出ている)の解釈がうまく行かなくなります.

わかりやすい平行平板コンデンサーでいいますと,
「2つの極板にそれぞれ +Q,-Q の電荷を与えた」というのは,
もともと電荷がなかった状態を出発点にして電荷を Q だけ一方の極板からもう一方の極板に
移したと考えればよいでしょう.
そうすれば,一方の極板には +Q の電荷が,もう一方の極板には -Q の電荷が,
それぞれ存在するこ...続きを読む

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

Q研究室訪問メール、添削してください;;

私は理系大学3年で大学院(修士)を目指しています。
院ではOSを研究したいと思っています、そこで第一希望の研究室(他大学、国立)にメールでアポイントをとって研究室訪問を考えていて、研究室の教授宛てにメール本文を作ったのですが自信がないので添削してください。
ここ失礼じゃん!くどい!といったことでも何でもいいのでアドバイスを頂けましたら幸いです。


件名 研究室訪問について

/* 本文↓ */
XX教授    /* XX様の方がいいですか? */

XX大学XX学部XX学科3年生の"本名"です。
私は博士前期課程に進学を希望していて、システムソフトウエア(OS)の研究をしたいと考えています。
XX研究室のHPを拝見しました、特にXX研究室で研究しているXXの柔軟性にとても興味があります。
つきましては教授のご都合の良い日時にお会いしてお話を伺いたいです。
お忙しいところお手数をおかけして恐縮ですが、よろしくお願い致します。

XX大学XX学部XX学科3年生 "本名"
"電話番号" "メールアドレス"

Aベストアンサー

大学の理系についての風土を知らないので、一般社会の感覚からお答えしたいと思います。理系独特の礼儀がある場合があるかもしれないので、ご参考までということでご覧下さい。

まず、「メール」でのアポ取りとのことですが、その方法が最善なのでしょうか?おそらくサイトの連絡先にメールアドレスがあったということでしょうが、メールの場合、相手に読まれるかどうか、すぐに開封してもらえるかどうかという点で不安が残る側面がありますので注意なさった方がよいと思います。確実なのは電話でしょうね。その他にも手紙やFAXという連絡手段もあります。どれを選択するのかを再確認なさった方がよいかと思います。

上記をふまえて、メールの添削です。


---------------
/* 件名↓ */
研究室ご訪問のお願い【XX大学・XXと申します】

/* 本文↓ */
XX大学XX学部XX学科 XX教授

突然のご連絡で失礼いたします。
XX大学XX学部XX学科3年生の"本名"と申します。
貴大学のサイトを拝見いたしましてXX享受の研究に興味をもち、お話をうかがいたく、ご連絡差し上げた次第です。

現在、私はXX大学の3年生ですが、卒業後は博士前期課程に進学を希望しております。
そちらでは、システムソフトウエア(OS)の研究をしたいと考えています。

この度、XX研究室のHPを拝見し、XXの柔軟性に非常に興味をもちました。

よろしければ、こちらの研究につきましてお話をうかがいたく、お時間頂戴することは可能でしょうか。
もし可能でしたら、○曜日の○時から○時の時間帯に貴研究室にうかがうことが可能なのですが、ご都合いかがでしょうか。

突然の勝手なお願いで大変恐縮ですが、お時間を頂戴することが可能かどうか、また可能であればご都合よろしいお時間をうかがえれば幸いです。

お忙しいなかお手数をおかけしまして大変恐れ入りますが、どうぞ宜しくお願い申し上げます。

なお、ご返答につきましては、こちらのメールアドレスにそのまま返信していただければ結構です。

以上

"本名"
XX大学XX学部XX学科3年生
"電話番号(固定)" "電話番号(携帯)"
"メールアドレス"
"住所"
---------------

■件名
「お願い」ということばを入れたほうがよいかと思います。相手にとっては突然の連絡なのですから。

■宛名
肩書きも入れた方がよいかなと思います。共用のメールアドレスである場合、他人が見る可能性もあるのですから、なるべく個人を特定できるかたちで。また、ビジネスメールでも、会社名・部署は書きますし。

■あいさつ
突然の連絡ですので、非礼を詫び、自己紹介、簡単な経緯説明という流れで、相手に状況をわかっていただくようつとめた方がよいかと思います。
あるいは、拝啓などの手紙の定型文を採用するのも一案です。

■詳しい自己紹介と経緯説明
あいさつ文とかぶる内容ですが、ここが肝です。例文でわからなかったので、少ししか書いていませんが、ここでもっと自分をアピールするとよいかと思います。今まで何を研究してきて、教授のところで何を学びたいのかということを言えばよいと思います(長すぎたらダメですけどね。2パラグラフくらいが目安でしょうか。)。相手にとっては、研究心に燃える学生が連絡をくれることは嬉しいことでもあるのですから、そのあたりをアピールした方がよいと思います。

■アポ取り
順序としては、訪問してもよいかどうかを先ずうかがい、それを踏まえて都合を聞くという流れが丁寧かと思います。ただ、訪問するくらいはOKという想定もできますし、自分の都合の良い時間帯を提示しておくと話がスムーズに進むでしょう。相手に選択肢を示し、その中から選んでいただくわけです。

もう一つ欲を言えば、話をうかがう時間がどのくらいになるかも示せればという気がします。一時間ですむのか、三時間くらいじっくり話したいのか。。。

■まとめ
最後にあらためてあいさつをしながら、相手に何をしてほしいのかをまとめておくとよいでしょう。

■署名
僕だったら、あらゆる連絡先を示しておきますが、これは自由。アピールのため、所属よりも先に名前をおきます。

---------------

長くなってしまいすみません。
あくまでもご参考ということでご覧下さい。
僕のメール文は、非常に丁寧な書き方ですので、場合によってはもう少し、くだけてもよいかもしれません。
あと、サイトに表示されるために改行は入れませんでしたが、適度に改行を入れることが必要ですね。

大学の理系についての風土を知らないので、一般社会の感覚からお答えしたいと思います。理系独特の礼儀がある場合があるかもしれないので、ご参考までということでご覧下さい。

まず、「メール」でのアポ取りとのことですが、その方法が最善なのでしょうか?おそらくサイトの連絡先にメールアドレスがあったということでしょうが、メールの場合、相手に読まれるかどうか、すぐに開封してもらえるかどうかという点で不安が残る側面がありますので注意なさった方がよいと思います。確実なのは電話でしょうね。そ...続きを読む

Q線電荷による電位

単位長さあたりq[C]の無限直線の線電荷から距離aだけ離れた点の電位を求めたいのですが。
電界はE=q/4πε0a[V/m]となったのですが、ここから電位を求めるにはどうすればいいのでしょうか?点電荷だと-∫[∞→r]Edrというような感じで求めることができると思いますが、線電荷の場合はどうなのでしょう?

Aベストアンサー

電位の基準点は断りがなければ無限遠点にとるのが普通です.
これは,無限遠点はどこから見ても無限遠点なので,
電荷が複数あった場合に基準点を共通に取れると言うことから来ています.
電位というのは標高みたいなものですから,
2つ以上の電荷があるときには基準点を統一しないと直接比較ができないことになります.

でも今の場合は基準点を無限遠点に取ると電位が発散してしまいますので,
この種の問題では「ただし,電位の基準点は線電荷から距離 R の場所とする」
というような但し書きがあるのが普通です.
但し書きがなければ,自分で
「電位の基準点をは無限遠点に取るのが通常だが,
今はそうできないので距離 R の点を基準にした」
などと書いておけば文句のつけようはないでしょう.

電位を単なる電界の不定積分にするのは(少なくとも私は)感心できません.

Q導体球と外部に点電荷があったとき

電界の強さが0になるのは導体球表面だけでしょうか?
導体球は接地されています。
影像法の問題を解いているのですが、関数を描画する際にそこしか表示されないので不安になってしまいました。
式は
q/Sqrt((x-d)^2+y^2 )-Q/Sqrt((x-a)^2+y^2 )=0

のような感じです。dは導体外部の点電荷の原点からの距離、aは影像点電荷の原点からの距離です。
導体球は原点を中心としています。

ご指南お願いします。

Aベストアンサー

導体球の中も表面と同じ電位です。
そうでないと電流が流れて電荷の分布が変わってしまいます。

導体球全体が等電位(接地ならゼロ)であるためには、
導体球表面が等電位であることが「必要条件」です。

鏡像法は電荷qと映像電荷-Qからの距離がq:Qであるような点の集合が
球面になることを利用して、この必要条件を求める方法ですので、
グラフが球面だけしか描画されないのは当然です。
球の内部の電位は単純にこの時の表面電位と同じだと考えてください。

Qの電荷は仮想的なものですが、実際の球表面に誘導された
電荷分布を一点で代表するならばどこになるかを表しています。
ガウスの法則により内部には電荷は存在しないので、
導体球は中身が詰まっていなくても同じ結果になります。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング