システムメンテナンスのお知らせ

重積分の問題なのですが

∬xe^xydxdy D={(x,y) l 1/x≦y≦2, 1≦x≦2}

答えは 1/2(e^4-e^2)-e なのですが、答えに辿り着けません。
途中式の回答をお願いします。

gooドクター

A 回答 (4件)

単純に逐次積分で計算すればいいだけじゃないかなぁ.


あなたがどう計算したのかが書いてあれば「ここが違う」って書きようもあるけど....
    • good
    • 7

∬xe^(xy)dxdy


=∫[1→2]x(∫[1/x→2](e^(xy)dy))dx
=∫[1→2]x[(1/x)e^(xy)][1/x→2]dx
=∫[1→2](e^(2x)-e)dx
あとは自分で。
    • good
    • 0

問題とは関係ありませんが累乗している数はかっこで囲んでいただけるとありがたいです


eにxだけがかかっているのかxy両方かかっているのかが分かりにくいので

さて問題ですが、まずyから積分しましょう
問題文からx≠0なのでxでの割り算は可能
よって
∫(1/x→2)xexp(xy)dy=exp(2x)-e

後はこれをxで積分すればおしまい
∫(1→2)exp(2x)-e=1/2(e^4-e^2)-e

yの定義域にxが含まれているのでyから先に積分しましょう。
xで先に積分すると、積分した後にxが残ってしまいます。

xから先に積分することもできますが、定義域の設定が少しややこしくなります。
    • good
    • 0

積分範囲はy=1/x~2,x=1~2になります。

よって、
I=∫[1~2](xdx)∫[(1/x)~2](e^(xy)dy)
=∫[1~2](xdx)・(1/x)(e^(2x)-e)
=∫[1~2](e^(2x)-e)dx
=1/2・(e^4-e^2)-e
    • good
    • 1

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

gooドクター

このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング