今だけ人気マンガ100円レンタル特集♪

分母が文字の分数を微分する方法を教えてください。


8/xを微分すると、-8/x二乗になるようなんですけど、なぜそうなるのか教えてください。

数学は大の苦手なので、分かりやすくお願いします:(;゛゜'ω゜'):

このQ&Aに関連する最新のQ&A

n/a 意味」に関するQ&A: N/Aの意味

A 回答 (2件)

x^nをxで微分するとnx^(n-1)になるというのは習ったと思いますが、


それを利用します
(ちなみに記号^は累乗の記号です。a^bは「aのb乗」を意味します)。

8/x = 8x^(-1)と変形して、無理矢理x^nの形に直します。
x^nをxで微分するとnx^(n-1)になるので、
x^(-1)をxで微分すると-x^(-2)となります。
よって8x^(-1)をxで微分すると-8x^(-2) = -8/(x^2)となります。
    • good
    • 39
この回答へのお礼

おぁぁぁぁ!!わかりました!!


-8x^(-2)は、分数の形に直すと分母が1になる。

分子のx^(-2)を消すために、分母にx^(2)をかけちゃえばいい!!

結果、-8/x二乗 になるんですね!!


ありがとうございました!!

お礼日時:2010/08/19 01:13

1/xは、xの-1乗です。


xの2乗やxの3乗と同様の方法で微分しましょう。
    • good
    • 10

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q指数の付いた式の微分

ある参考書によると

u(x)=16*x^1/3

をxで微分すると

u'(x)=16/3*x^(-2/3)

と書いていますが、なぜそうなるのか
よく分かりません。

指数があるときの微分について何か公式の
ようなものがあったような気がしますが、
手元に本がありません。

微分についてお詳しい方ご教示願います。

Aベストアンサー

f(x)=x^a
を微分したとき、
f'(x)=ax^(a-1)
となります。

f(x)=x^3 を微分すると f'(x)=3x^2 になるのと同じです。

Qe^xを微分するとe^xになる理由

大学1年のものです。

(e^x)'=e^xの証明がわかりません。
高校で習ったような気もしますが、習ってないような気もします。

ここの過去の質問も見させてもらったところ、2つほど見つけたのですが、

1)
y=e^x
logy=x
(1/y)y'=1
よって  y'=y=e^x



2)  e^xを無限級数に直して微分



1)の場合d(logx)/dx=1/x…(*)を利用していますが、(*)は(e^x)'=e^xを利用せずに証明できるのでしょうか?

2)の場合、e^xを無限級数に直すためには、テーラー展開をしないとダメなような気がするのですが、テーラー展開をするときに(e^x)'=e^xを利用しなければならないような気がします。



1)、2)とも(e^x)'=e^xの証明に(e^x)'=e^xを利用しているとすればこれらは意味を成さないような気がするのですが…


微分の定義に沿って証明しようともしましたが、

(e^x)'=lim{h→0}(e^x((e^h)-1)/h)

となり、ここで行き詰ってしまいました。



(e^x)'=e^xはなぜ成り立つのでしょうか?
よろしくお願いします。

大学1年のものです。

(e^x)'=e^xの証明がわかりません。
高校で習ったような気もしますが、習ってないような気もします。

ここの過去の質問も見させてもらったところ、2つほど見つけたのですが、

1)
y=e^x
logy=x
(1/y)y'=1
よって  y'=y=e^x



2)  e^xを無限級数に直して微分



1)の場合d(logx)/dx=1/x…(*)を利用していますが、(*)は(e^x)'=e^xを利用せずに証明できるのでしょうか?

2)の場合、e^xを無限級数に直すためには、テーラー展開をしないとダメなよ...続きを読む

Aベストアンサー

orangeapple55さんのおっしゃるとおり、「一般的には」1)も2)も(e^x)'=e^xを用います。
従って1)にも2)にも頼らず、定義によって微分することにしましょう。

(e^x)'
=lim[h→0](e^x((e^h)-1)/h)
=e^xlim[h→0]{((e^h)-1)/h}

となるので、結局問題は
lim[h→0]{((e^h)-1)/h}……(*)
の収束性に帰着します。

そこで、この極限について考察してみましょう。以下、適宜e^xをexp(x)と表現します。

まず、h>0のときについて考えましょう。
このとき、exp(h)>1ですから実数t>0を用いて
exp(h)=1+1/t……(1)
と表すことができます。

指数関数は連続ですから、
lim[h→0]exp(h)=1
ゆえに
lim[h→0]t=∞
つまり、
h→0のときt→∞……(2)
が成り立ちます。

また、h=log(exp(h))を利用すると、(1)よりh=log(1+1/t)……(3)
ですから、(1)、(2)、(3)より、(*)はtを用いて
(*)=lim[t→∞]1/{tlog(1+1/t)}=lim[t→∞]1/log{(1+1/t)^t}
と書き直すことができます。

さて、対数関数も連続ですから、
lim[h→0]log{(1+1/t)^t}=log{lim[h→0]{(1+1/t)^t}}です。
そこで、lim[h→0]{(1+1/t)^t}に注目しましょう。

nを自然数とします。そうすれば、二項定理を用いて
(1+1/n)^n
=1 + nC1*(1/n) + nC2*(1/n)^2 + …… + (1/n)^n
=1 + 1 + (1-1/n)/2! + (1-1/n)(1-2/n)/3! + …… + (1-1/n)(1-2/n)……(1-(n-1)/n)/n!……(4)
と展開できます。

(1+1/(n+1))^(n+1)
を同じように展開すると、(1+1/n)^nに比べて
イ:項数が増え
ロ:個々の項が増大する
ことが容易に確認できますから、(1+1/n)^nはnが増すと単調増加します。
しかも、(4)より、

(1+1/n)^n
<1 + 1/1! + 1/2! + …… 1/n!
<1 + 1 + 1/2 + 1/2^2 + …… + 1/2^(n-1)
<1 + (1-(1/2)^n)/1-1/2
<3

ですから、(1+1/n)^nは上に有界(どんなnをとってきても(1+1/n)^n<MとなるMが存在する。今の場合例えばM=3)です。

ここで公理を使います。
「上に有界かつ単調増加な数列は収束する」
これは実数の連続性を認めないと出てこない公理なのですが、今はとりあえず認めることにしましょう。そうすると、

「(1+1/n)^nは3以下のある値に収束する」

ことが分かります。これを私たちはeと定義したのでした。
以下、証明は省きますが、xを実数としても、(1+1/x)^xはやはりx→∞でeに収束することは容易に類推できると思います。
(証明が気になるなら図書館で解析に関する本を探してみてください。おそらく載っていると思います)

さて、このeを底にとった対数関数を自然対数logと決めたのですから、結局のところ
log{lim[h→0]{(1+1/t)^t}}=log(e)=1
が出ます。よって、(*)=1、つまり、(e^x)'=e^xを示すことができました。h<0についても同様です。

適当なことを言いたくなかったので、長くなってしまいました。すいません。
整理すると、
(1)(1+1/x)^xはx→∞で2.71ぐらいに収束する(収束値をeと名付ける)
これが一番最初にあります。これを用いて、
(2)e^xを指数関数とする
(3)logxをその逆関数とする
これが定義されます。この順番を理解していないと、おかしな循環論法に陥ります。

(注:冒頭で「一般的には」と書いたように、これと違った定義の仕方もあります。
たとえばe^x=1+x/1+x^2/2!+……と先に指数関数を定義してしまう方法。
これらに関しても、順番に注意すれば循環論法に陥らずに公理のみから件の命題を証明することができるでしょう)

最後に、僕は以上でいくつか仮定をしています。
対数関数が連続であること。指数関数が連続であること。
実数の連続性。(1+1/x)^xはxが実数であってもx→∞でeに収束すること。
これらの証明(あるいは公理の必然性)をあたってみることは決して無駄ではないと思います。

orangeapple55さんのおっしゃるとおり、「一般的には」1)も2)も(e^x)'=e^xを用います。
従って1)にも2)にも頼らず、定義によって微分することにしましょう。

(e^x)'
=lim[h→0](e^x((e^h)-1)/h)
=e^xlim[h→0]{((e^h)-1)/h}

となるので、結局問題は
lim[h→0]{((e^h)-1)/h}……(*)
の収束性に帰着します。

そこで、この極限について考察してみましょう。以下、適宜e^xをexp(x)と表現します。

まず、h>0のときについて考えましょう。
このとき、exp(h)>1ですから実数t>0を用いて
exp(h)=1+...続きを読む

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Qeの微分の公式について

e^xの微分はe^xですが
e^f(x)の微分はf'(x)e^f(x)でいいのでしょうか?
ネットで調べたのですが、e^xの微分の公式の説明ばかりだったので教えてください

Aベストアンサー

あってますよ。
普通に検索すると、確かに見つけにくいですね^^
http://www-antenna.ee.titech.ac.jp/~hira/hobby/symbolic/derive.html

Qlogの微分を教えてください。

logの微分を教えてください。
「^」とかあっても、よくわからないので、できれば、画像で><
今月15日の定期試験に向けて勉強していますが、答えがないので、わかりません。
そんな問題があと20題ほど。
答えだけでも結構です。解答プロセスはなんとか勉強しますが、
今は自力で自信のある解答を導くことができません。

どうぞお願いいたしますm(xx)m

Aベストアンサー

答えだけでいいならば、分母からlogeを取り除けば正解です。

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Q分母にxのある方程式の解き方を教えて頂けますか?

分母にxのある方程式の解き方を教えて頂けますか?

15/(6-x)-15/(7-x)=1/2

よろしくお願いします。

Aベストアンサー

こんばんは。

両辺に、2(6-x)(7-x)をかけましょう。
そうすれば、分母からxがなくなります。

分母に(6-x)や(7-x)があるせいで困っているのだから、
分母からこれらをなくしてやればいいという発想ですね。

以下、ご参考まで。
15/(6-x)-15/(7-x)=1/2 ←元の方程式
30(7-x)-30(6-x)=(6-x)(7-x)
210-30x-180+30x=42-13x+x^2
(x^2)-13x+12=0
(x-1)(x-12)=0   ∴x=1,12

Q分子が文字の微分方法がわからないので教えてください。 例えば x/2 をxで微分する時です。

分子が文字の微分方法がわからないので教えてください。 例えば x/2 をxで微分する時です。

Aベストアンサー

中学一年の数学の教科書を引っ張り出して復習しましょう。!!絶対に必要。そこが完ぺきに抜けている。
中学一年で、引き算が足し算になり、割り算が掛け算に変わったあたり・・・。数と計算を区別するようになったとき。
2÷3≠3÷2 だけど、2×(1/3)=(1/3)×2
とか
3-2≠2-3 だけど、2+(-3) = (-3)+2
この時に、2+(-3) とは、数直線上で +2 に (-3) を加える意味は、+2に-3を加えることだと

それが理解されていると、分数だろうが無理数だろうが未知数だろうが同じに扱える。
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
代数の基本・・・ここを徹底的に復習しておくこと。

x/2 とは、x × (1/2) で、交換則で、(1/2)×x という意味です。だから
d(ax)/dx = a
当然
x/2 は、(1/2)xのことだから、(x/2)' = 1/2

★いまさらと思わず、中学一年の一番最初の算数から数学に変わった当時の教科書を徹底的に復習しなおすこと。

Qe^x^2分の1の微分

e^xを微分するとe^xとなるのは分かるんですが、e^x^2分の1が、まったく分からないです。e^2xを微分すると2e^2xとかは、わかるのですが、丁寧に教えてください。よろしくお願いします

Aベストアンサー

e^2xを微分して2e^2xとなるのは
e^xを微分したものがe^xで、
f(g(x))を微分したものがg’(x)×f’(g(x))だからです。
元の式では、2xを微分した2が前についているわけです。
だからe^x^(1/2)はx^(1/2)を微分したものをかけてやればOKです。

Qy=1/(2x-1)を微分する方法について質問します。

y=1/(2x-1)を微分する方法について質問します。

(g(x)/f(x))'=(g'(x)*f(x)-g(x)*f'(x))/(f(x))^2 を使わず解きたいのですが、なかなか答えが合いません。
途中式がおかしいのでしょうか?


途中式↓
y=1/(2x-1)=(2x-1)^(-1)
y'=(-1)(2x-1)^(-2)
y'=-(1/(2x-1)^2)

Aベストアンサー

括弧の中身が微分されていませんよ。(2x-1)を微分すると2が出てきます。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング