ネットが遅くてイライラしてない!?

どなたか御教授下さい。
RC並列回路の場合、時定数はどのように考えたらいいのでしょうか?
直列回路のτ=RCの関係は直感的になんとなくわかるのですが、並列になるとよくわかりません。。。
素人な質問で申し訳ありませんが、よろしくお願い致します。

A 回答 (4件)

 


 
 「直列の直感」とは多分、__| ̄ ̄ の電圧印加による応答波形ですね、もし、この電圧を並列回路に加える‥と考えてるなら無茶です。(*) あなたが電気系の学生なら「教科書の最初に戻って双対変換を!」の一言で終わりなんですが、、(直列を並列に変えるなら 同時に電圧源も電流源に変えるんです。)



 電流源という言葉を使わない説明;

  ┌─R1─┬─┬
  V     R2  C
  └───┴─┴

Vが__| ̄ ̄ の電圧だとすれば Cの電圧は
  Vc = kV・(1-exp(-t/τ) …(1)
となるのは分かりますよね。
  k = R2/(R1+R2)
  τ= CR1R2/(R1+R2) …(2)
です。


試しにτの分母分子を R2で割ってから、R2→∞とすると
  τ= CR1/(R1/R2+1) → CR1/(0+1) = CR1
となって CR直列の時定数になりました!

同様に R1で割って R1→∞とすると
  τ= CR2/(1+R2/R1) → CR2/(1+0) = CR2
図で、R1が巨大なら R1の配線が切れてるのと同じで、R2とCだけの並列回路ですよね。その時定数は 並列のR2とCの積。



 つまり; 極限を考えないと望む答に到達しないのでした。電流源とは、その中にこの極限の考えを押し込めたものです。 参考までに;巨大なR1にそれなりの電流を通すためにはVも巨大なんだろうな、と考えてください。



(*)
回路をR1=0にすればそうなりますよね。すると(2)式の値は? それが
>> 並列になるとよくわかりません。。。 <<
と行き詰まる原因でした。
 
 
    • good
    • 0
この回答へのお礼

丁寧な御回答、ありがとうございました。
参考になりました。

お礼日時:2005/03/18 22:16

 通常時定数τはτ=RCですが、並列回路はではRはゼロになるのでτ=0になります。


 即ち、RC並列回路に電圧Eを加えると、瞬間的に、コンデンサの電圧は電圧E[V]になります。
 それだけのことです。
    • good
    • 0
この回答へのお礼

ありがとうございました。
参考になりました。

お礼日時:2005/03/18 22:15

RC並列回路の場合は時定数はゼロでしょう。


コンデンサには巨大な電流が瞬間的に流れます。
おそらく、電線が焼けたり、コンデンサが爆発したりするでしょう。

No.2の方の図で言えばR1=0の場合に相当します。
    • good
    • 2
この回答へのお礼

ありがとうございました。
参考になりました。

お礼日時:2005/03/18 22:15

RCの並列回路に、ステップ的な電流を流したとき、


RやCの両端電圧がどんな時間変化をするか、
と考えてみては如何でしょうか。
    • good
    • 0
この回答へのお礼

ありがとうございました。
考えては見たのですが、残念ながら
わかりませんでした。
御指摘ありがとうございました。

お礼日時:2005/03/18 22:18

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

QRC並列回路(直流)の微分方程式が分かりません

RC並列回路(直流回路)の過渡応答の微分方程式がうまく導くことができません。
初期状態で,電荷Qがコンデンサに蓄えられています。
回路動作のイメージは出来ているのですが・・・。

どなたか,助けていただけませんか?
もうノートが真っ黒です。よろしくお願いします。

Aベストアンサー

とりあえず,ANo.5のaの回路を扱っておきます.
例によってスイッチSを閉じた瞬間を時刻t = 0とし,
電源から流出する電流をi,
抵抗を流れる電流をi_R,
コンデンサを流れる電流をi_Cとします.

キルヒホフの第1法則より
i = i_R + i_C. …(1)

第2法則より
v = r i + R i_R, …(2)
v = r i + (1/C)∫(-∞,t] i_C dt. …(3)

※私個人的には気持ち悪いのですが,式が煩雑になるのを避けるため,定積分の上端と積分変数に同じ文字を使いました.

※あと,デルタ関数とかの処理をきっちりするため,積分下端を-∞にしました.

ただし,
v = E u(t). …(4)

(1),(2)よりi_Rを消去して,
i_C = (1 + r/R)i - v/R.

これを(3)に代入して,
v = r i + (1/C)∫(-∞,t]{(1 + r/R)i - v/R}dt
dv/dt = r di/dt + (1 + r/R)i/C - v/(C R)

∴di/dt + (1 + r/R)i/(C r) = {dv/dt + v/(C R)}/r = (E/r){δ(t) + u(t)/(C R)}.

ただし,初期条件は E = r i(0) より
i(0) = E/r.

これがこの回路の微分方程式です.

----
この微分方程式はラグランジュの定数変化法で解くことができて,初期条件を考慮した解は,t > 0 において

i
= (E/r)exp{-(1 + r/R)t/(C r)}
+ E/(R + r) [1 - exp{-(1 + r/R)t/(C r)}],

したがって,

i_R = E/(R + r) [1 - exp{-(1 + r/R)t/(C r)}],

i_C = (E/r)exp{-(1 + r/R)t/(C r)}.

コンデンサの両端の電圧は

v_C = R i_R
= E/(1 + r/R) [1 - exp{-(1 + r/R)t/(C r)}]

以上の結果においてr→+0の極限を取ると,その振る舞いはANo.3の解と一致します.

とりあえず,ANo.5のaの回路を扱っておきます.
例によってスイッチSを閉じた瞬間を時刻t = 0とし,
電源から流出する電流をi,
抵抗を流れる電流をi_R,
コンデンサを流れる電流をi_Cとします.

キルヒホフの第1法則より
i = i_R + i_C. …(1)

第2法則より
v = r i + R i_R, …(2)
v = r i + (1/C)∫(-∞,t] i_C dt. …(3)

※私個人的には気持ち悪いのですが,式が煩雑になるのを避けるため,定積分の上端と積分変数に同じ文字を使いました.

※あと,デルタ関数とかの処理をきっちりするため,積分下端を-∞にしまし...続きを読む

Q時定数の求め方について

始めまして、初めて質問します。

「電源、抵抗R、コンデンサCを直列に接続し、さらにコンデンサに並列に抵抗rを接続した場合」の時定数はどうなるのでしょうか?
電源、抵抗R、コンデンサCを直列に接続しただけのRC回路の時定数はRCになる事は導けたのですが、コンデンサに抵抗rを並列接続しただけでどうしたらよいのかわからなくなってしまいました。

どうかよろしくお願いいたします。

Aベストアンサー

R・i1+r・i3=E・・・・・(1)
q/C=r・i3・・・・・(2)
i1=i2+i3・・・・(3)
(1)(2)(3)の式からi1を解くと、
τ=C・R・r/(R+r)に成ります。
参考に
i1=E/(R+r)・{1+ε^-(R+r)t/(CRr)}

QRC並列回路過渡現象について

お世話になります。
RC並列回路のパターンの過渡現象の解き方を教えて下さい。

Aベストアンサー

もうひとつ別の方法。

EとR1を電流源で置き換えると
電流値=E/R1 と抵抗R1を並列に接続した
ものになります。

するとR1とR2が並列に繋がるので

これはコンデンサCに抵抗R=R1R2/(R1+R2)を
並列接続して、それに 電流値=E/R1 の
電流源を並列に繋げたのと同じです。

これをさらに、電流源を電圧源に置き換えると、
電圧値=E・R2/(R1+R2)に抵抗R=R1R2/(R1+R2)と
コンデンサCを直列接続したのと同じです。

とすると、コンデンサの電圧はvgから、上でもとめた
電源電圧へ、時定数RCで変化するので
正解は②

QCR直列回路とCR並列回路の時定数について

CR並列回路でCがフル充電状態から完全放電されるまでの時間と
CR直列回路でCが空っぽからフル充電されるまでの時間はどちらも
T=CRで良かったでしょうか。

Aベストアンサー

bの回路で、+12Vの電源が理想的(あるいは、内部抵抗が5kΩより十分低い)なら、同じ時定数(電圧/電圧の変化率)になります。

Q時定数について

時定数(τ=CR)について物理的意味とその物理量について調べているのですが、参考書等これといってわかりやすい説明がありません。どうが上記のことについて詳しく説明してもらえないでしょうか?

Aベストアンサー

1次応答のお話ですね。
物理の世界では「1次応答」と呼ばれる系をしばしば扱います。その系の応答の時間的尺度を表す数字が「時定数」です。物理量としては時間の次元を持ち、時間と同様に秒や分などを単位に表現できます。

直感的には「水槽から出て行く水」のアナロジーで考えると分かりやすいと思います。いま水槽があって下部に蛇口が付いているとします。蛇口をひねると水は流れ出ますが、水が流れ切ってしまうまでにどれくらい時間がかかるでしょうか。
明らかに水槽が大きいほど、そして蛇口が小さいほど時間がかかります。逆に水槽が大きくても蛇口も大きければ水は短時間で出て行きますし、蛇口が小さくても水槽が小さければこれまたすぐに水槽はからっぽになります。
すなわち水がからっぽになるまでに要する時間の目安として
 水槽の大きさ×蛇口の小ささ
という数字が必然的に出てきます。ご質問の電気回路の場合は
 コンデンサの容量→水槽の大きさ
 抵抗→蛇口の小ささ
に相当するわけで、CとRの積がその系の応答の時間的な目安を与えることはなんとなくお分かり頂けると思います。

数式を使いながらもう少し厳密に考えてみましょう。以下のようにコンデンサCと抵抗Rとからなる回路で入力電圧と出力電圧の関係を調べます。
 + C  -
○─┨┠─┬──●
↑    <  ↑
入    <R  出
力    <  力
○────┴──●

入力電圧をV_i、出力電圧をV_oとします。またキャパシタCに蓄積されている電荷をQとします。
するとまず
V_i = (Q/C) + V_o   (1)
の関係があります。
また電荷Qの時間的変化が電流ですから、抵抗Rの両端の電位差を考えて
(dQ/dt)・R = V_o   (2)
も成立します。
(1)(2)を組み合わせると
V_i = (Q/C) + (dQ/dt)・R   (3)
の微分方程式を得ます。

最も簡単な初期条件として、時刻t<0でV_i = 0、時刻t≧0でV_i = V(定数)となるステップ応答を考えます。コンデンサCは最初は帯電していないとします。
この場合(3)の微分方程式は容易に解かれて
V_o = A exp (-t/CR)   (4)
を得ます。exp(x)はご存じかと思いますがe^xのこと、Aは定数です。解き方が必要なら最後に付けておきましたので参考にして下さい。
Cは最初は電荷を蓄積していないのですから、時刻t=0において
V_i = V = V_o   (5)
という初期条件が課され、定数Aは実はVに等しいことが分かります。これより結局、
V_o = V exp (-t/CR)   (6)
となります。
時間tの分母にCRが入っているわけで、それが時間的尺度となることはお分かり頂けると思います。物理量として時間の次元を持つことも自明でしょう。CとRの積が時間の次元を持ってしまうのは確かに不思議ではありますが。
(6)をグラフにすると下記の通りです。時刻t=CRで、V_oはV/e ≒0.368....Vになります。

V_o

* ←初期値 V        
│*
│ *
│   *         最後は0に漸近する
│      *       ↓
└───┼──────*───*───*───*─→t
t=0  t=CR
   (初期値の1/e≒0.368...倍になったタイミング)


【(1)(2)の解き方】
(1)の両辺を時間tで微分する。V_iは一定(定数V)としたので
0 = (1/C)(dQ/dt) + (dV_o/dt)
(2)を代入して
0 = (1/CR) V_o + (dV_o/dt)
-(1/CR) V_o = (dV_o/dt)
- dt = dV_o (CR/V_o)
t = -CR ln|V_o| + A
ここにlnは自然対数、Aは定数である。
この式は新たな定数A'を用いて
V_o = A' exp (-t/CR)
と表せる。

1次応答のお話ですね。
物理の世界では「1次応答」と呼ばれる系をしばしば扱います。その系の応答の時間的尺度を表す数字が「時定数」です。物理量としては時間の次元を持ち、時間と同様に秒や分などを単位に表現できます。

直感的には「水槽から出て行く水」のアナロジーで考えると分かりやすいと思います。いま水槽があって下部に蛇口が付いているとします。蛇口をひねると水は流れ出ますが、水が流れ切ってしまうまでにどれくらい時間がかかるでしょうか。
明らかに水槽が大きいほど、そして蛇口が小さい...続きを読む

Qコンデンサの放電時間の算出方法をお教え下さい。

十分に充電された300V、100μFの電解コンデンサの両足を
10kΩの抵抗でショートした場合、コンデンサに蓄えられた
電荷が全て放出されるまでに掛かる時間の求め方を
教えて頂けますでしょうか。

宜しくお願い致します。

Aベストアンサー

いつまで経っても電荷が全て放出されることはありません。
放電が進むと電圧が下がって流れる電流は少なくなります。
T秒で半分の電圧になるとすると、次のT秒で半分、次のT秒で半分・・・となって無限の時間が掛かります。

Qカットオフ周波数とは何ですか?

ウィキペディアに以下のように書いてました。

遮断周波数(しゃだんしゅうはすう)またはカットオフ周波数(英: Cutoff frequency)とは、物理学や電気工学におけるシステム応答の限界であり、それを超えると入力されたエネルギーは減衰したり反射したりする。典型例として次のような定義がある。
電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
導波管で伝送可能な最低周波数(あるいは最大波長)。
遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。


ですがよくわかりません。
わかりやすく言うとどういったことなのですか?

Aベストアンサー

>電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
>導波管で伝送可能な最低周波数(あるいは最大波長)。
>遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。

簡単にいうと、一口に「カットオフ周波数」と言っても分野によって意味が違う。
電子回路屋が「カットオフ周波数」と言うときと、導波管の設計屋さんが「カットオフ周波数」と言うとき
言葉こそ同じ「カットオフ周波数」でも、意味は違うって事です。



電子回路の遮断周波数の場合
-3dB はエネルギー量にして1/2である事を意味します。
つまり、-3dBなるカットオフ周波数とは

「エネルギーの半分以上が通過するといえる」

「エネルギーの半分以上が遮断されるといえる」
の境目です。

>カットオフ周波数は影響がないと考える周波数のことでよろしいでしょうか?
いいえ
例えば高い周波数を通すフィルタがあるとして、カットオフ周波数が1000Hzの場合
1010Hzだと51%通過
1000Hzだと50%通過
990Hzだと49%通過
というようなものをイメージすると解り易いかも。

>電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
>導波管で伝送可能な最低周波数(あるいは最大波長)。
>遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。

簡単にいうと、一口に「カットオフ周波数」と言っても分野によって意味が違う。
電子回路屋が「カットオフ周波数」と言うときと、導波管の設計屋さんが「カットオフ周波数」と言うとき
言葉こそ同じ「カットオフ周波数」でも、意味は違うって事です...続きを読む

Q計算値と理論値の誤差について

交流回路の実験をする前に、ある回路のインピーダンスZ(理論値)を計算で求めたあと、実験をしたあとの測定値を利用して、同じ所のインピーダンスZ(計算値)を求めると理論値と計算値の間で誤差が生じました。
そこでふと思ったのですが、なぜ理論値と計算値の間で誤差が生じるのでしょうか?また、その誤差を無くすことはできるのでしょうか? できるのなら、その方法を教えてください。
あと、その誤差が原因で何か困る事はあるのでしょうか?
教えてください。

Aベストアンサー

LCRのカタログ値に内部損失や許容誤差がありますが、この誤差は
1.Rの抵抗値は±5%、±10%、±20% があり、高精度は±1%、±2%もあります。
2.Cの容量誤差は±20% 、+50%・ー20% などがあり
3.Lもインダクタンス誤差は±20%で、
3.C・Rは理想的なC・Rでは無く、CにL分、Lに抵抗分の損失に繋がる成分があります。
これらの損失に繋がる成分は、試験周波数が高くなると、周波数依存で増大します。
また、周囲温度やLCRの素子自身で発生する自己発熱で特性が変化します。
測定器や測定系にも誤差が発生する要因もあります。
理論値に対する測定値が±5%程度発生するのは常で、実際に問題にならないように、
LCRの配分を工夫すると誤差やバラツキを少なく出来ます。
 

Qダイオードの温度特性について

ダイオードは温度が高くなると、順方向電圧Vdが小さくなる特性を持ち、その傾きは-2mV/℃といわれています。

トランジスタ設計の本や関連HPを見るとダイオードの特性は下記の式になっていますが、
下記の値を入れて計算すると絶対温度Tが上昇するとVdも上昇する式になってしまいます。
どうしてでしょうか?

Vd = ((K*T)/q)*ln(Id/Is)
  = 1.785e-3*T

K:ボルツマン定数=1.38e-23[J/K]
q:電子の電荷:=1.602e-19[c]
Id:順方向電流=1e-3[A]
Is:飽和電流=1e-14[A]
T:絶対温度

Aベストアンサー

 
 
 以下、Vd,Id の d は省略します、 (q*V/(k*T)) などは (qV/kT) と略記します、 温度Tは300Kとします。


>> トランジスタ設計の本や関連HPを見るとダイオードの特性は下記の式になっていますが、
Vd = ((K*T)/q)*ln(Id/Is)
<<


 ここはぜひ、その式の元の形である
  I = Is・exp(qV/kT) …(1)
の式で覚えてください。半導体の理論は根底が exp(エネルギ/熱エネルギ) という関数から出発してるので、この形で慣れておけば 将来ともお得です。
 で、
Is 自体も exp(-Eg/kT) 的な電流です。 Egはシリコンのバンドギャップエネルギ、kTは温度Tの熱エネルギです。 Is の成分の詳細説明は専門書にゆずるとして、大局的には
  Is = A・exp(-Eg/kT) …(2)
と書けます。
係数 A は今は定数とします。(2)を(1)に入れると、
  I = A・exp(-Eg/kT)・exp(qV/kT) …(3)
両辺をAで割って 両辺を対数取って V=の形にすると、
  V = (1/q){ kT・ln(I/A)+Eg } …(4)
あなたが載せたVdの式より 少し詳しく求まりました。


 さて、
温度係数の定義は 『Tだけが変化する』 です。そのとき I は(何らかの手段で)一定に保たれてるとします。すると(4)式はT以外すべて定数となるので単純に微分できて、
  ∂V/∂T = (1/q)k・ln(I/A) …(5)
これが疑問への答です。これに(3)式を入れると、
  ∂V/∂T = (1/T){ V-Eg/q } …(6)
温度とバンドギャップと電子電荷だけの式になりました。Eg/q は次元が電圧で、バンドギャップ電圧と呼ばれたりします、その値はシリコンで約 1.11[V] です、この機会に暗記しましょう。(6)式を言葉で書くと

  温度係数=(順電圧-1.11 )÷温度 …(7)
  温度300k,順電圧 0.65V のとき、-1.5 mV/K ほど。
  温度300k,順電圧 0.51V のとき、-2 mV/K ほど。

変動は、電流が小さいほど(=順電圧が小さいほど)□□く、高温ほど□□いんですね。このように 使用温度、使用電流、品種、製造ロットによって変わるものなのだ、と覚えてください。



 余談;
詳しく言えば切りがないのですが、 Egそのものも温度Tの関数です。係数Aは回路シミュレータでは温度の3乗がよく使われます。SI単位系に慣れましょう。
それから、他人が書いた式を眺めてるだけでは自分の力が付きません、ぜひ式変形を自分の手で最後までやってみましょう。
 
 

 
 
 以下、Vd,Id の d は省略します、 (q*V/(k*T)) などは (qV/kT) と略記します、 温度Tは300Kとします。


>> トランジスタ設計の本や関連HPを見るとダイオードの特性は下記の式になっていますが、
Vd = ((K*T)/q)*ln(Id/Is)
<<


 ここはぜひ、その式の元の形である
  I = Is・exp(qV/kT) …(1)
の式で覚えてください。半導体の理論は根底が exp(エネルギ/熱エネルギ) という関数から出発してるので、この形で慣れておけば 将来ともお得です。
 で、
Is 自体も exp(-Eg/kT) 的な電流...続きを読む

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング